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CFIF, Instituto Superior Técnico, Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal

(Received 20 September 2011; published 29 February 2012)

A rigorous treatment of the combined effect of thermal and quantum fluctuations in a zero-dimensional

superconductor is considered one of the most relevant and still-unsolved problems in the theory of

nanoscale superconductors. In this Letter, we notice that the divergences that plagued previous calcu-

lations are avoided by identifying and treating nonperturbatively a low-energy collective mode. In this

way, we obtain for the first time closed expressions for the partition function and the superconducting

order parameter which include both types of fluctuation and are valid at any temperature and to leading

order in �=�0, where � is the mean level spacing and �0 is the bulk energy gap. Our results pave the way

for a quantitative description of superconductivity in nanostructures at finite temperature and pairing in

hot nuclei.
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Superconductivity in nanostructures has attracted the
attention of the condensed matter community since the
early days of the Bardeen-Cooper-Schriffer (BCS) theory
[1]. Later, it was observed [2] that the superconducting
transition in nanowires and small particles became broader
as the grain size decreased due to thermal and quantum
fluctuations. The use of path integral techniques [3,4] led to
a quantitative description of thermal fluctuations, espe-
cially in zero-dimensional superconductors [3] where the
static phase approximation (SPA) is applicable. For one-
dimensional systems, the theoretical treatment of quantum
fluctuations of [5] provided a semiquantitative description
(up to a numeric prefactor) of the broadening of the tran-
sition observed in [2]. The field received an important
impetus in the mid-1990s after the experiments of Ralph
et al. on single, isolated Al nanoparticles [6] that showed
for the first time that superconductivity survived in single
particles down to a few nanometers. These experiments
also stimulated the theoretical interest in ultrasmall super-
conductors. At zero temperature, Richardson’s formalism
[7] made it possible to find exact solutions for the low-
energy excitations of the reduced BCS Hamiltonian [8].
However, a theoretical analysis that takes into account
thermal and quantum fluctuations simultaneously is still
an open problem in the field. In [9], this problem was
addressed by combining the SPA, which models thermal
fluctuations, with the random phase approximation (RPA),
which accounts for quantum fluctuations to leading order
in �=�0. However, it was found that the resulting partition
function had singularities at low temperature. Progress in
this problem is especially timely, as recent experiments,
taking advantage of advances in the growth and control of

nanostructures, have put the basis to quantitatively test the
limits of superconductivity in the nanoscale [10,11]. On the
theoretical side, a satisfactory description of both effects is
broadly considered [12] as a key step to open new avenues
of research.
The main goal of this Letter is to put forward a theoreti-

cal analysis free of divergences and valid at all tempera-
tures that combines thermal and quantum fluctuations to
leading order in �=�0 in a zero-dimensional superconduc-
tor. These results are of interest for other strongly interact-
ing fermionic systems. For instance, for the quantitative
description of pairing in heavy nuclei, it is necessary to
take into account quantum and thermal fluctuations [13]
(see also [14] for a recent review). In the context of cold
atomic gases, a similar effect becomes important as a result
of the interplay between pairing and the optical potential
that traps the atomic gas [15].
Technical details of the calculation are postponed to a

forthcoming publication [16]. Here, we summarize the
main results, their limits of applicability, and the key
technical aspects. Moreover, we also provide explicit re-
sults of the order parameter in two simple cases: a constant
spectral density and two highly degenerate shells.
Model, approximations, and main results.—We consider

the BCS Hamiltonian:

H ¼ X
�;�

"�c
y
�;�c�;� � �g

�X
�;�0

c�;1c
y
��;�1c��0;�1c�0;1

�
;

where � and �� label one-particle states related by time
reversal symmetry with energies "� ¼ "��, � is the mean
level spacing, � ¼ �1 is the spin label, and g is the
dimensionless coupling constant. The partition function
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of the model is given by Z ¼ Tr½e��H�. The fermionic
degree of freedom can be integrated exactly by introducing
a complex valued Hubbard-Stratonovich field �ð�; rÞ
which results in a partition function Z=Z0 ¼R
D�yD�e�S½��, where Z0 is the partition function for

free electrons. The main goal of the paper is to evaluate Z
including thermal and quantum fluctuations. The main
approximations in our calculation are (a) the grain size is
zero-dimensional, namely, the coherence length � is larger
than the system size. As a consequence, �ð�; rÞ only
depends on imaginary time �ð�; rÞ � �ð�Þ. (b) The time
dependence is sufficiently weak so that an expansion to the
second order is justified. At T ¼ 0, this corresponds with
the usual RPA around the saddle point solution�0 which is
valid in the limit �=�0 < 1. (c) We assume that, for
�=�0 < 1, Coulomb interactions can be accounted by a
simple redefinition of g. Recent experiments [11] suggest
that, at least for Pb and Sn grains, this is a good approxi-
mation up to sizes �� �0 or L� 5 nm.

The main result of this Letter is the following expression
for Z, valid at all temperatures, that includes simulta-
neously thermal and quantum fluctuations,

Z=Z0 ¼
Z 1

0
ds20e

��ðA0½s0�þA1½s0�Þ; (1)

where

A0½s0� ¼ ð�gÞ�1s20 �
2

�

Z
D
d"%ð"Þ

� ln

�
cosh

�
��

2

�
= cosh

�
�j"j
2

��
; (2)

A1½s0� ¼ 1

2

Z
d�

�
nBð�Þ � 1

��

�

� 1

2�i
fln½ ~Cð�þ i0þÞ� � ln½ ~Cð�� i0þÞ�g; (3)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 þ "2

q
; %ð"Þ ¼ P

��ð"� "�Þ is the spectral
density of the one-body problem; nF

B
ðzÞ ¼ 1

e�z�1
are, re-

spectively, the Fermi and Bose functions; and

~CðzÞ ¼ ð�z2 þ 4s20Þð�z2Þ
�Z

D
d"%ð"Þ rð�Þ

�z2 þ ð2�Þ2
�
2

þ ð�z2Þ
�Z

D
d"%ð"Þ 2"rð�Þ

�z2 þ ð2�Þ2
�
2
; (4)

with rð�Þ ¼ 1
2� tanhð��2 Þ and

R
D ¼ RED�ED

. For T ¼ 0, we

recover the RPA results [9], and, for T � Tc, Z is given by
the SPA of [3].

Calculation Highlights.—We give an overview of the
calculation leading to (1) with special emphasis on the
main differences with respect to the techniques of [9]. A
comprehensive account of technical details will be pro-
vided elsewhere [16].

The task is to evaluate simultaneously the contribution to
the partition function Z of thermal fluctuations, taken into

account by integrating exactly over the static component of
�ð�Þ (SPA) and quantum fluctuations, arising as small
(imaginary) time-dependent Gaussian corrections (RPA)
to SPA. Previous approaches to this problem [9] considered
indeed small corrections ��ð�Þ to a static solution �ð0Þ,
�ð�Þ ¼ �ð0Þ þ ��ð�Þ. Then, �ð0Þ is integrated out ex-
actly and the integral over ��ð�Þ is carried out in the
Gaussian approximation. It is therefore assumed that any
small correction around any �ð0Þ is still a local minimum
of the action, namely, the real part of the eigenvalues of

�ij ¼ �S
�Xi�Xj

j�ð�Þ¼�ð0Þ [with X1;2 ¼ �ð�Þ; ��ð�Þ] is always

positive. However, it was found in [9] that some eigenval-
ues of � acquire a negative real part as the temperature is
lowered. As a consequence, divergences occur and the
theory breaks down, thus preventing the combined study
of quantum and thermal fluctuations. Divergences in this
context usually suggest the existence of a collective zero
mode that must be treated nonperturbatively. In order to
identify this collective mode, we separate phase and am-

plitude fluctuations by using polar coordinates �ð�Þ ¼
sð�Þei	ð�Þ, with sð�Þ ¼ s0 þ �sð�Þ and 	ð�Þ ¼ 2�

� M�þ
	0 þ �	ð�Þ, where �	ð�Þ and �sð�Þ are small fluctuations
around the static values s0 and	0, andM 2 Z accounts for
phase configurations with nontrivial winding numbers.
Note that a simple gradient expansion of the action gen-
erates, up to second order in @�	ð�Þ, a contribution of the
form i

2� hNis0
R
d�@�	ð�Þ þ 1

4�

R
d�½@�	ð�Þ�2 (where

hNis0 is the average number of electrons in the dot for a

fixed s0) [17,18]. A collective mode can be explicitly
identified with an exact zero mode by noticing that such
a contribution is time-translation-invariant [	ð�Þ !
	ð�þ �0Þ]. The identification of this collective mode,
which is evident only in polar coordinates, is nevertheless
crucial. If treated perturbatively, it will lead to the negative
eigenvalues and divergences observed in [9]. By contrast,
following the above decomposition, we restrict � to a
subspace where the zero modes were removed; therefore,
its eigenvalues always have a positive real part and no
divergences arise. In other words, unlike [19], where the
full low-energy sector has divergences, in our model, the
Gaussian integration is accurate for all nonzero modes,
provided that �	ð�Þ and �sð�Þ are small. We can then treat
separately the collective mode and integrate exactly over
the static phase 	0. This is the key difference between our
method and that of [9]. As a consequence, our results
provide a quantitative, free-of-divergences, description of
the combined quantum and thermal fluctuations at any
temperature. Finally, we note that only the M ¼ 0 contri-
bution is considered here and, instead, we keep the full
gradient dependence of the action. The reason for that is
that, at T ¼ 0, the M � 0 contributions are related to odd-
even effects [18] not addressed in this Letter. At T � 0, the
action of paths withM � 0 is proportional toM2 [17], and
consequently its contribution to the partition function is not
important.
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The described procedure leads to the partition function

Z ¼
Z �

��

d	0

2�

Z 1

0
ds20e

��A0½s0� �
Z

D0~s2D0	

� e

�1=2
P
m�0

:
~s2�m

	�m

 !
�s2s2

m �s2	
m

�	s2
m �		

m

0
@

1
A ~s2m

	m

 !
; (5)

where �s2s2
m ¼ ��1 1

2s2
0

P
�
c�ð1�fð2"�Þ2=½�2

mþð2��Þ2�gÞ
½P

�
c��2 , �		

m ¼
�
P

�c�
2s20�

2
m

�2
mþð2��Þ2 , and �s2	

m ¼ ��	s2
m ¼P

�
c�f�mð2"�Þ=½�2

mþð2��Þ2�gP
�
c�

, with c� ¼ ½nfð���Þ�nfð��Þ�
2��

and

~s2m ¼ ð�P�c�Þs2m. 	m and s2m are the mth Matsubara
component of �	ð�Þ and �s2ð�Þ [defined as Ym ¼
1
�

R
d�ei�m�Yð�Þ, Y ¼ �	; �s2].D0 stands for the integra-

tion over the nonzero Matsubara components, and �m is
normalized such that det�m!1 ¼ 1. A0½s0� is an exten-
sive part of the action coming from the integration of the
electronic degrees of freedom, and A1½s0� in Eqs. (1) and
(3) is the spectral determinant resulting from the Gaussian
integration over the fluctuations around the mean-field
solution. From these considerations, one can interpret

� 1
� Im ~Cð�þ i0þÞ, given in Eq. (4), as the density of states

of the fluctuating modes.
Results.—The natural order parameter for the supercon-

ducting (sc) transition is the connected pair correlation

function �2
C ¼ ðg�Þ2P��0 hcy�01c

y
�0�1c��1c�1iC. An ex-

plicit expression for �C is obtained in a standard way by
adding source terms to the action S and deriving, with
respect to them,

�2
C ¼ ��2 � ð�gÞ2

Z
D
d"%ð"Þ½hhnscð�Þ2ii � hhnscð�Þii2�;

(6)

where

�� 2 ¼
��

s20

�
ð�gÞ

Z
D
d"%ð"Þrð�Þ

�
2
��

; (7)

nscð�Þ ¼ 1
2 ½1� "

� tanhð��2 Þ�, and the average hh� � �ii is de-
fined as hhOii ¼ Z0

Z

R1
0 ds20e

��ðA0½s0�þA1½s0�ÞO. In the lit-

erature, other parameters have been considered to
study deviations from mean-field results: for example,

hhs20ii [3] and �2
P ¼ ðg�Þ2P��0 ½hcy

�01c
y
�0�1

c��1c�1ig �
hcy

�01c
y
�0�1

c��1c�1ig¼0� [9]. The latter can be simply

related to (7) by �2
P ¼ ��2 � g�ð�gÞRD d"%ð"Þ�

½hhnscð�Þ2ii � nfð"Þ2�. For simplicity, we assume �C �
��, as other terms in (6) do not play a significant role and
make the calculation slightly more involved. �C becomes
the bulk gap for � ! 0 and it is expected to be closely
related to the spectral gap at finite �. We focus on two
especially simple situations: (a) a constant spectral density
and (b) only one level, usually called shell, in the interact-
ing region with a degeneracy Nl � 1 such that �=�0 	 1,

where � ¼ 2ED=Nl. Physically, this corresponds to a
spherical or cubic grain in which, due to geometrical
symmetries, the spectrum is highly degenerate. Other ge-
ometries can be easily studied, but calculations are
more involved. We postpone this study to a future publi-
cation [16].
Constant spectral density.—In this case, %ð"Þ ¼ 1=�

and the partition function (5) cannot be simplified further,
so we carry out the calculation of �C (6) numerically. In
Fig. 1, we depict �CðTÞ for different values of �. As was
expected, no divergences arise at low temperatures. For
zero temperature, �Cð0Þ is equal to the RPA result [9] that
predicts a leading correction �Cð0Þ ¼ �0ð1þ ��=EDÞ,
with � a constant of the order unity. For T � TC, �C

agrees with the SPA [3] that describes thermal but not
quantum fluctuations (see Fig. 2). Results from
Richardson’s formalism [7,20] at T ¼ 0 are similar, but a
direct comparison is not possible, as �C is not exactly the
spectral gap. In Fig. 2, we depict the difference between (7)
and the SPA prediction. Deviations at low temperatures are
mostly due to the RPA correction; however, it is clearly
observed that, for intermediate temperatures, differences
from SPA results increase as a consequence of the com-
bined effect of thermal and quantum fluctuations.
Previously, this region was not accessible to analytical
calculations. We note that the observed enhancement of
�C by quantum and thermal fluctuations is not an indica-
tion that superconductivity is more robust. In fact, fluctua-
tions always weaken long-range order, causing phase slips
and the broadening of the transition. The gap is enhanced
because fluctuations induce pairing in circumstances
which are not allowed within a mean-field approach.
Shell models.—The calculation of the partition function

greatly simplifies by assuming that there are only two
degenerate levels (shells) in the interaction region.
We note that quantum fluctuations are still small, and
therefore our formalism is still applicable, provided that
the degeneracy of the level Nl=2 is large enough such that

FIG. 1 (color online). �CðTÞ (6) for a constant spectral density

ð"Þ ¼ 1=�. �CðTÞ combines thermal and quantum fluctuations.
It reduces to the RPA (SPA) for T 	 TC (T � Tc).
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� 	 �0, where, in this case, � ¼ 2ED=Nl. With this sim-
plification, we find an explicit expression for A1. For two

shells with energy at �"0 {i.e., %ð"Þ ¼ Nl

2 ½�ð"� "0Þ þ
�ð"þ "0Þ�g, A0 and A1 in (1) are given by

A0½s0� ¼ �g

8><
>:s20 �

4"0 cothð"0�c

2 Þ log½cosh½ð1=2Þ�
ffiffiffiffiffiffiffiffiffiffi
"2
0
þs2

0

p
�

sech½ð�j"0jÞ=2� �
�

9>=
>;;

A1½s0� ¼ 1
� ln½��20csch2ð��0Þ sinhð�s0Þs0

�, where �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 þ "20

q
and �c ¼ T�1

c ¼ 2coth�1ðEDg="0Þ
"0

. For T ¼ 0, the first cor-

rection to the mean-field result coincides with the RPA

prediction, �C ¼ �0ð1þ g�
�0
f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð"0�0

Þ2
q

� 1
2 ½1þ ð"0�0

Þ2�gÞ,
where �0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
Dg

2 � "20

q
. In the limit T � Tc, it is also

possible to obtain explicit expressions of �C by expanding
the action in powers of s0. To the lowest order in �, the SPA

result �C ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtanh2ð�"0=2Þcoth2ð�c"0=2Þ
�½1�tanhð�"0=2Þ cothð�c"0=2Þ�

q
is recovered.

Higher-order terms include deviations from the SPA due
to quantum fluctuations.

In summary, we have shown for the first time that
thermal and quantum fluctuations can be combined in a
single theoretical framework. We have cured divergences
that plagued previous calculations by integrating exactly a
zero-energy mode. As a result, we obtain explicit expres-
sions for Z and �CðTÞ valid for all temperatures and to
leading order in �=�0. For intermediate temperatures, both
fluctuations contribute substantially to �CðTÞ. These re-
sults provide a solid theoretical framework to describe
quantitatively pairing in confined geometries at finite

temperature beyond the mean-field approximation, a prob-
lem of current interest in condensed matter, nuclear, and
cold-atom physics. Natural extensions of this work include
the calculation of odd-even effects, magnetic susceptibili-
ties and the differential conductance, and the outcome of
STM experiments [16].
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