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We study a one-dimensional wire with strong Rashba and Dresselhaus spin-orbit coupling (SOC), which

supports Majorana fermions when subject to a Zeeman magnetic field and in the proximity of a supercon-

ductor. Using both analytical and numerical techniques we calculate the electronic spin texture of the

Majorana end states. We find that the spin polarization of these states depends on the relative magnitude of

the Rashba and Dresselhaus SOC components. Moreover, we define and calculate a local ‘‘Majorana

polarization’’ and ‘‘Majorana density’’ and argue that they can be used as order parameters to characterize

the topological transition between the trivial system and the system exhibiting Majorana bound modes. We

find that the local Majorana polarization is correlated to the transverse spin polarization, and we propose to

test the presence of Majorana fermions in a 1D system by a spin-polarized density of states measurement.

DOI: 10.1103/PhysRevLett.108.096802 PACS numbers: 73.20.�r, 73.63.Nm, 74.78.Fk

Introduction.—Majorana fermions have been attracting
a lot of interest recently in light of the discovery of new
materials with topological-insulator properties [1]. These
atypical fermionic particles were predicted a long time ago
by E. Majorana as real solutions of the Dirac equation [2].
Many condensed-matter systems such as Pfaffian states in
fractional quantum Hall (FQH) systems [3], chiral p-wave
superconductors [4] (like strontium ruthenate [5]), nodal
superconductors under certain conditions [6], ultracold
fermionic atoms with laser-field-generated spin-orbit in-
tearctions [7], the surface of 3D strong topological insu-
lators [8], as well as semiconductor-superconductor
heterostructures [9] have been proposed as platforms sup-
porting Majorana fermions. Among the possible hetero-
structures, one-dimensional (1D) systems with a strong
spin-orbit coupling such as InAs and InSb wires [10], or
topologically insulating wires [11], subject to Zeeman
magnetic field and in proximity of a superconductor
(SC), can exhibit Majorana fermions at their extremities
[12,13]. Various proposals have been made to detect the
Majorana states including interferometry [14], noise [15]
and spectroscopy measurements [16], etc. However, while
a direct confirmation of the existence of the Majorana
states would constitute an important step for fields such
as quantum computation [17], they have not been detected
experimentally so far.

Majorana modes for two-dimensional spin-triplet topo-
logical superconductors have been shown to exhibit an
Ising-like spin density that may allow their detection via
coupling to a magnetic impurity [18]. Along similar lines,
we propose a method to detect the Majorana states in 1D
topological semiconducting wire spectroscopically, using
spin-polarized scanning tunneling microscopy (STM). We
generalize the model in Refs. [12,13] to include both
Rashba and Dresselhaus spin-orbit interactions, and we
show that the resulting Majorana bound states exhibit a

characteristic spin texture. In particular we find that the
component of the spin polarization in the transverse spin-
plane (orthogonal to the direction of the magnetic field) is
nonzero solely in the topological phase, and its orientation
is determined by the relative weight of the SOC compo-
nents. Moreover, we introduce a ‘‘Majorana pseudospin’’
local order parameter and define two new local quantities
denoted Majorana polarization and Majorana density
which quantify locally the Majorana character of a state.
We show that the transverse spin polarization is related to
the Majorana polarization and we propose that its mea-
surement via spin-polarized STMwill allow one to directly
visualize the Majorana fermionic states, and thus to test the
topological character of a one-dimensional system.
Model.—We consider a semiconducting wire oriented

along the x direction, and in proximity to a s-wave super-
conductor. Because of bulk inversion asymmetry, semi-
conducting wires can exhibit along with the Rashba
SO interaction analyzed in Refs. [13,19], a Dresselhaus
SO interaction of the same order of magnitude [20]

(� 0:1 eV �A). The Bogoliubov–de Gennes (BdG)
Hamiltonian for the infinite wire with both types of SOC
can be written as

H ¼
Z

�yH�dx; �y ¼ ðc y
" ; c

y
# ; c #;�c "Þ;

H ¼
�
p2

2m
��þ �p�y þ �p�x

�
�z þ Vz�z � ��x:

(1)

�’s and �’s are the usual Pauli matrices acting, respec-
tively, in the spin and particle-hole spaces. The chemical
potential is denoted by �, Vz is the Zeeman field, � is the
induced superconducting pairing and �ð�Þ characterize
the strengths of the Rashba (Dresselhaus) SOC compo-
nents. The presence of the Dresselhaus term only trivially
modifies the spectrum for the translationally invariant
system [13]
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E2 ¼ �2 þ ð�2 þ �2Þp2 þ V2
z þ�2 � 2ð�2ð�2 þ �2Þp2

þ �2V2
z þ �2V2

z Þ1=2; (2)

with � ¼ p2=2m��. A careful analysis of this model
shows that the conditions for the existence of the topologi-
cal phase supporting Majorana fermions are unaffected by
the Dresselhaus SO interactions, V2

z >�2 þ�2. It is in-
teresting to note however that Majorana bound states can
exist even in the absence of the Rashba term, when
Dresselhaus SO interactions are present. Most importantly,
the spin texture of the Majorana states is influenced by the
presence of the Dresselhaus term. To support this claim we
present an analytical study of the wave functions corre-
sponding to the Majorana bound states, and we comple-
ment it by a numerical study of the corresponding lattice
model.

Analytical solution.—It has been shown that Majorana
bound states can arise at the interface between trivial and

topological regions of a one-dimensional wire, for ex-
ample, by considering a position dependent chemical po-
tential [13,21]. Thus, by choosing a chemical potential
�1 for x 2 ½0; L�, such that �2

1 <V2
z � �2, and a �2

0 >
V2
z ��2 outside this interval, one obtains a finite-size

topological region inside a topologically trivial phase.
The chemical potentials are chosen such that the p ¼ 0

gap, �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 ��2

p
, is much smaller than the supercon-

ducting gap �, which allows one to obtain analytical
solutions to the problem by linearizing the Hamiltonian
in p. We assume that L � 1, such that the problem can be
solved independently at the two ends. Thus, ignoring the
finite-size effects, the condition to have zero-energy solu-
tions bound at the two interfaces yields the allowed values

for the momenta,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
k�j ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
z ��2

j

q
, j 2

f0; 1g. Consequently, the Majorana solution at the left
boundary c ðx� 0Þ can be written as

�u1ð�1Þek�1 x; x > 0;
�

2

��
1þ tan�1

tan�0

�
u1ð�0Þek�0 xþ

�
1� tan�1

tan�0

�
u2ð�0Þekþ0 x

�
; x < 0: (3)

Similarly, the Majorana solution at the right boundary c ðx� LÞ is

�u3ð�1Þe�k�
1
ðx�LÞ; x < L;

�

2

��
1þ tan�1

tan�0

�
u3ð�0Þe�k�

0
ðx�LÞ þ

�
1� tan�1

tan�0

�
u4ð�0Þe�kþ

0
ðx�LÞ

�
; x > L; (4)

with ei�j ¼ 1=
ffiffiffi
2

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�j=Vz

q
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��j=Vz

q
Þ, and the Majorana eigenvectors are given by

u1ð�jÞT ¼ ðcos�je
i#;� sin�j; sin�je

i#; cos�jÞ; u2ð�jÞT ¼ ðcos�je
i#; sin�j;� sin�je

i#; cos�jÞ;
u3ð�jÞT ¼ �ðcos�je

i#; sin�j; sin�je
i#;� cos�jÞ; u4ð�jÞT ¼ ð� cos�je

i#; sin�j; sin�je
i#; cos�jÞ:

(5)

Here, ei# ¼ ð�þ i�Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
allows one to define a

two-dimensional spin-orbit vector in the transverse plane,
e# ¼ ðcos#; sin#Þ. Note that the obtained wave functions
are indeed Majorana fermions respecting the reality con-
dition through the phase choice ð# þ 	Þ=2 for the complex
coefficient �. The magnitude of � is determined from the
normalization conditions of the wave functions and is of
the order of ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
z ��2

1

q
� �=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p Þ1=2.
The electronic local spin polarization sðxÞ of a given

four-component (two spin� electron=hole) Nambu state
jc i can be calculated by evaluating the expectation values

siðxÞ ¼ hc j�i
�0þ�z

2 jc i (the �0 þ �z insures that we only

take into account the electronic, and not the hole degrees of
freedom). This prescription yields for the Majorana fermi-
onic states at x ¼ 0 and x ¼ L:

sð0Þ¼ j�j2
2

ð�sinð2�1Þcos#;sinð2�1Þsin#;cosð2�1ÞÞ

sðLÞ¼ j�j2
2

ðsinð2�1Þcos#;�sinð2�1Þsin#;cosð2�1ÞÞ:
(6)

The above results show that the spin z components are
equal at the ends of the wire, while the transverse
spin polarization is equal in magnitude and opposite. Its

direction is fixed solely by the relative weight of the
Rashba and Dresselhaus SOC components, sy=sx ¼
��=�. It would be interesting to see whether this results
also holds in presence of interactions [19,22].
Definitions.—A general wave function written in Nambu

basis described in Eq. (1) as (u", u#, v#, v") can be recast in a
Majorana basis (
1", 
2", 
1#, 
2#), where

ð
1�; 
2�Þ ¼ 1ffiffiffi
2

p ðc y
�e

�i’=2 þ c �e
i’=2; iðc y

�e
�i’=2

� c �e
i’=2ÞÞ; (7)

and ’ is a phase characterizing the particular choice of
Majorana basis. We can focus simply on the spin up part of

the wave function and define the Majorana polarization P"
M

as the difference between the probability to have a 
1"
Majorana and the probability to have a 
2" Majorana,

P"
M ¼ P
1" � P
2". Note that P
1=2

but not PM, have been

also introduced in Ref. [19]. For the generalized (’ not

fixed) Majorana basis, it reads P"
M ¼ �2Re½u"v�

" e
�i’�.

The phase ’ defines a ‘‘Majorana polarization axis’’ such

that P"
M can be interpreted as a vector (we can denote

this vector as ‘‘Majorana pseudopsin’’). As such it is
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decomposed on the axis defined by ’ into P"
Mx
ð’ ¼ 0Þ ¼

�2Re½u"v�
" � and P"

My
ð’ ¼ 	=2Þ ¼ �2Im½u"v�

" �.
The same procedure can be repeated for the spin down

component. This leads to the definition of the full

Majorana polarization, PMi
¼ P"

Mi
þ P#

Mi
with i 2 fx; yg.

We should note that the absolute value of the polarization

vector PM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
Mx

þ P2
My

q
, which we denote Majorana

density, is not dependent on the choice of (x, y) axes in
the Majorana space. For further reference the Majorana
polarization and density are

PMx
¼ 2Re½u#v�

# � u"v�
" �; PMy

¼ 2Im½u#v�
# � u"v�

" �;
PM ¼ 2ju#v�

# � u"v�
" j: (8)

To emphasize the utility of such definitions the follow-
ing properties should be noted. For a wave function con-
taining only electronic (or hole) degrees of freedom, the
Majorana polarization is always zero. We have checked
that it equally vanishes for a conventional s-wave super-
conductor. A nonzero value for the Majorana density is a
necessary, but not sufficient condition to have Majorana
fermions, and identifies the low energy regime in which the
model yields an effective p-wave type superconductivity.
At zero energy this quantity is maximal and predicts
Majorana bound states at the edges. Inspecting the
Majorana polarization of these states allows one to unam-
biguously identify that the two Majorana fermions are of
different type. The most important property is that such
definitions allow one to explore locally (on-site in the
discretized system) the structure of the wave function,
and its Majorana character.

For the above analytical solutions, the Majorana polar-
ization vectors PM ¼ ðPMx

; PMy
Þ yield

PMð0Þ ¼ �PMðLÞ ¼ �j�j2ð cos#; sin# cosð2�1ÞÞ: (9)

The Majorana polarization vectors are opposite for the two
Majorana wave functions at the two ends. Besides, one can
identify a relation between the spin polarization vector and
the Majorana polarization. When�,�, Vz are fixed, PMx

is

proportional to sx, while PMy
is proportional to sy. Thus,

when only Rashba or Dresselhaus SOC is present, the total
transverse spin polarization is proportional to the Majorana
polarization, with a proportionality constant which de-
pends on the chemical potential and the applied Zeeman
field. When both components of the SOC are present, the
Majorana polarization and the transverse spin polarization
vectors are no longer collinear but the correlations between
these two quantities are still qualitatively preserved.

Numerical model.—For the numerical study, we con-
sider a tight-binding formulation of BdG Hamiltonian in
Eq. (1)

H ¼ X
j

�y
j ½ð�� tÞ�z þ Vz�z � ��x��j

� 1

2
½�y

j ðtþ i��y þ i��xÞ�z�jþ1 þ H:c:� (10)

with the Nambu basis�y
j ¼ ðcyj"; cyj#; cj#;�cj"Þ. The sum is

performed over N ¼ 100 sites in the system. We work in
units of t ¼ 1 and we consider the lattice constant l ¼ 1
and @ ¼ 1. Numerical simulations are done for typical
values of the parameters Vz ¼ 0:4, � ¼ 0:3, � ¼ 0.
By exact diagonalization we have access to the local

density of states, and the local spin-polarized density of
states along the x, y, and z directions. For example the local
(site n) electronic i-spin polarization density is given by

��i;n ¼
X4N
j¼1

�ð!� EjÞh�ðjÞ
n j�i

�0 þ �z
2

j�ðjÞ
n i; (11)

where Ej is the jth eigenvalue of H and j�ðjÞ
n i is the

site n component of the jth eigenvector, j�ðjÞ
n i ¼

ðuðjÞn" ; u
ðjÞ
n# ; v

ðjÞ
n# ; v

ðjÞ
n" Þ. We can thus use the definitions in

Eq. (8) to calculate the local Majorana polarization and
density. For example, the local (n site) Majorana x polar-
ization can be written as

PMx;n ¼
X4N
j¼1

�ð!� EjÞ2Re½uðjÞn# v�ðjÞ
n# � uðjÞn" v

�ðjÞ
n" �: (12)

Numerically, we implement the � functions as very thin
Gaussians of width � 0:0001@vF=l.
Numerical results.—As expected, the exact diagonaliza-

tion ofH recovers the Majorana bound states at the ends of
the wire. In Fig. (1) we present the x and z components of
the spin polarization, as well as the Majorana polarization
when the only considered SOC is Rashba. The symmetrical
situation, with only the Dresselhaus component of the SOC
present, is analyzed in the Supplementary Material (SM)
[23]. We can see that the zero-energy Majorana wave
functions are extended over a small number of edge sites,
while exhibiting strongly damped spatial oscillations. The
transverse electronic spin polarization is opposite at the
two ends of the wire; when only the Rashba term is present
only the x component of the transverse spin is nonzero. The
z-spin polarization is the same at the two ends of the wire.
While Eq. (6) predicts that the z polarization vanishes for
�1 ¼ 0, this is not the case in the numerical calculation.
This can be understood by the presence of an effective �
due to the neglected kinetic term, which to leading order,
contributes to hp2i � Oðð�� VzÞ2Þ, which creates a nega-
tive effective potential as in the numerical results.
Moreover, this effective chemical potential is responsible
for the spatial (quickly damped) oscillations of the spin
polarization observed numerically. Although these
oscillations are not captured by the continuum limit
calculations, one can however check that the ratio
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sy;i=sx;i depends only on the spin-orbit couplings in agree-

ment with Eq. (6).
The numerical results for the Majorana polarization

presented in Fig. (1) also follow closely Eq. (9). Thus,
the values of theMajorana polarization are always opposite
at the two ends of the wire, and only PMx

is nonzero when

only the Rashba component is present. Also, as expected,
PMx

is proportional in this case to the x-spin polarization.

Moreover, while we do not present this here in detail, when
both the Rashba and Dresselhaus SOC components are
present, the peculiar dependence of the Majorana polariza-
tion in Eq. (9) on the cosð2�1Þ term indicates that the
Majorana polarization vector should exhibit a spatial pre-
cession in Majorana space; we have verified numerically
that this is indeed the case.

We examine if Majorana polarization is a good order
parameter to characterize the topological transition. This is
done by varying one of the parameters (�, Vz, �) to drive

the system in a trivial phase. In Fig. (2), we vary Vz, and
indeed we see that the system becomes trivially gapped (no
Majorana bound states) for Vz 	 �. The inset describes the
dependence of the half-wire integral of the Majorana po-
larization for one of the lowest-energy states as a function
of Vz (an integral of 0.5 is equivalent to a ‘‘full’’ Majorana
state). The Majorana polarization decreases smoothly to
zero below the critical value of Vz. The same phenomenon
can be observed in the second panel, where we plot the
spatial distribution of the Majorana polarization as a func-
tion of Vz. We have noted that the transition becomes
sharper when increasing the size of the system. The same
qualitative features are obtained when � and � are varied
across the topological transition (the dependence on � is
presented in SM). This shows that the Majorana polariza-
tion (and density) is a good local order parameter for the
topological transition at V2

z ¼ �2 þ�2. This suggests that
the Majorana polarization can be used to investigate dis-
ordered wires [24], and indeed, as shown in SM, in the
presence of disorder it exhibits interesting features such as
a weak polarization of the low energy bulk states [25].
Moreover, the spin and Majorana polarization exhibit simi-
lar spatial structure, even in the presence of disorder.
Conclusion.—To summarize, we have found that the

Majorana end states are oppositely spin-polarized in the
transverse spin-plane, and the direction of polarization
depends on the relative weight of the Rashba and
Dresselhaus SOC in the wire. Moreover, we have proposed

FIG. 2 (color online). First panel: lowest-energy eigenvalues
and the half-wire integral of the Majorana polarization (inset) as
a function of Vz. Second panel: Majorana polarization of the
lowest-energy state as a function of position and Vz. Parameters:
� ¼ 0:3, � ¼ 0, � ¼ 0, and � ¼ 0:2

FIG. 1 (color online). The spin polarization along the z and x
directions, and the Majorana polarization PMx

, as a function of

energy and position, � ¼ 0:3, Vz ¼ 0:4, � ¼ 0:2, � ¼ 0, and
� ¼ 0.
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a new wave-function-based measure of the Majorana char-
acter of a system, which we denote Majorana polarization.
We have seen that this quantity is related to the electronic
spin polarization and we have proposed to test the
Majorana character of a 1D system using spin-polarized
STM measurements. While the density of states measure-
ments can only give information about the existence of a
localized state at a given energy, without telling anything
about its Majorana character, such a spin-polarized mea-
surement can make the difference between a Majorana
excitation or a nontopological localized state.
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