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We study the transition to chaos and the emergence of statistical relaxation in isolated dynamical

quantum systems of interacting particles. Our approach is based on the concept of delocalization of the

eigenstates in the energy shell, controlled by the Gaussian form of the strength function. We show that,

although the fluctuations of the energy levels in integrable and nonintegrable systems are different, the

global properties of the eigenstates are quite similar, provided the interaction between particles exceeds

some critical value. In this case, the statistical relaxation of the systems is comparable, irrespective of

whether or not they are integrable. The numerical data for the quench dynamics manifest excellent

agreement with analytical predictions of the theory developed for systems of two-body interactions with a

completely random character.
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Introduction.—Recent experimental progress in the
study of various quantum systems of interacting particles
(see, e.g., [1]) has triggered interest in basic problems of
many-body physics. One of the important issues is the
onset of thermalization in isolated dynamical quantum
systems due to interparticle interactions.

A prerequisite for thermalization is the statistical relaxa-
tion of the system to some kind of equilibrium and its
viability has been associated with the onset of quantum
chaos. The latter term was originally created to address
specific properties of dynamical quantum systems whose
classical counterparts are chaotic. Later, it was found that
similar properties of spectra, eigenstates, and dynamics
could emerge in quantum systems without a classical limit,
as well as in quantum systems with disordered potentials.
Nowadays, the term quantum chaos is used in a broader
context when referring to those properties, irrespective of
the existence of a classical limit.

According to studies of isolated quantum many-body
systems, their eigenfunctions (EFs) in the mean-field (mf)
basis spread as the interaction between particles (or quasi-
particles) increases and they may eventually become cha-
otic eigenstates. The latter term refers to eigenstates with a
large number of uncorrelated components, thus allowing
one to use statistical methods for their description [2].
Examples based on experimental data include excited
states of the cerium atom [3] and compound states in heavy
nuclei [4].

It should be stressed that in isolated systems with finite-
range interaction, only part of the basis states jni defined by
the noninteracting (quasi)particles is directly coupled when
the perturbation is turned on. Thus, the exact eigenstates
j�i ¼ P

nC
�
n jni overlap only with some of the basis states,

that is only a fraction of the componentsC�
n can be nonzero.

In the energy representation, this fraction constitutes the
energy shell of the system. The definitions of localization,
sparsity, and ergodicity that we use are madewith respect to
the energy shell [5]. The eigenstate is localized if its non-
zero C�

n ’s are restricted to a small portion of the shell. The
eigenstate is delocalized if its nonzero components spread
through thewhole shell. In this last case, j�i is either sparse,
if not all components are nonzero, or ergodic, when it fills
the shell entirely. Both show a very large number of princi-
pal components (Npc � 1) strongly fluctuating with n, but

only the latter can lead to truly chaotic eigenstates. In
chaotic eigenstates the coefficientsC�

n are randomvariables
following a Gaussian distribution around the ‘‘envelope’’
defined by the energy shell. They occurwhen the interaction
exceeds a critical value [2,5–7].
The energy shell is associated with the limiting form of

the strength function (SF) written in the energy represen-
tation [5]. This function is defined via the projection of
unperturbed states onto the basis of perturbed (exact)
eigenstates. SF is widely used in nuclear physics and is
analogous to the local density of states in solid state
physics. It has been shown that the shape of SF changes
from a Breit-Wigner (Lorentzian) to a Gaussian form as the
interparticle interaction increases [2,6,8,9].
If a quantum system has a classical limit, the shapes of

both EFs and SFs in the energy representation have clas-
sical analogs. The quantum-classical correspondence of
EFs and SFs has been studied for various few and many-
body systems (see Refs. [10,11]). Typically, delocalization
of EFs in the energy shell is directly related to the chaot-
ization of the system in the classical limit, thus providing a
tool to reveal the transition to quantum chaos.
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The emergence of chaotic eigenstates has been related to
the onset of thermalization in many-body systems, even if
the latter are isolated from a heat bath [2,6,7,11–16]. It was
shown in [2,7,13] that when the eigenstates become cha-
otic, the distribution of occupation numbers achieves a
Fermi-Dirac or a Bose-Einstein form, thus allowing for
the introduction of temperature. Using a two-body random
matrix model, a relation between temperature and interac-
tion strength was analytically derived [2], implying that the
interparticle interaction plays the role of a heat bath. Since
the components of chaotic eigenstates can be treated as
random variables, the eigenstates close in energy are sta-
tistically similar. This fact is at the heart of the eigenstate
thermalization hypothesis [12], according to which the
expectation values of few-body observables obtained with
individual eigenstates correspond to the predictions from a
microcanonical ensemble [14,15].

Even though works about the chaotization of eigenstates
and its relevance to the problem of thermalization exist,
they are mainly numerical, thus leaving various questions
open. One of these problems, addressed in this Letter, is the
analysis of generic conditions under which chaotic eigen-
states emerge in dynamical systems of current interest in
experiments with optical lattices. We consider systems of
interacting spin-1=2 particles, but the results are equiva-
lently valid to systems of spinless fermions or hard-core
bosons. We propose a semianalytical method to estimate
the critical interaction strength leading to the emergence of
chaoticlike eigenstates, which does not require the diago-
nalization of the Hamiltonian matrices. We also show how
this transition is reflected by the form of the strength
functions. Another main goal of our work is the analytical
description of the relaxation process of such dynamical
systems, a problem that has not been sufficiently studied
yet.

The models.—We consider two models of interacting
spins-1=2. One model has only nearest-neighbor (NN)
couplings which results in its complete integrability. The
other model has additional next-nearest-neighbor (NNN)
couplings and becomes chaotic when the two coupling
strengths are comparable. Assuming open boundary con-
ditions, the Hamiltonians read as

H1 ¼ H0 þ�V1; H2 ¼ H1 þ �V2;

H0 ¼ J
XL�1

i¼1

ðSxi Sxiþ1 þ Syi S
y
iþ1Þ; V1 ¼ J

XL�1

i¼1

Szi S
z
iþ1;

V2 ¼
XL�2

i¼1

J½ðSxi Sxiþ2 þ Syi S
y
iþ2Þ þ�SziS

z
iþ2�; (1)

where � and � control the perturbation in model 1 and
model 2, respectively. Here, L is the number of sites,
Sx;y;zi ¼ �x;y;z

i =2 are the spin operators at site i, with
�x;y;z

i as the Pauli matrices and @ ¼ 1. The coupling
strength J defines the energy scale and is set to 1.

In model 1,H0 determines the mf basis in which the total
HamiltonianH1 is presented. This term moves the up spins
through the chain and can be mapped onto a system of
noninteracting spinless fermions [17] or of hard-core
bosons [18], being therefore integrable. The system re-
mains integrable when the Ising interaction V1 is added,
no matter how large the anisotropy parameter � is. The
total Hamiltonian H1 is known as the XXZ Hamiltonian
and can be solved exactly via the Bethe ansatz [19].
In model 2,H1 determines the mf basis and V2 is treated

as the ‘‘residual interaction’’ responsible for the onset of
chaos. The parameter � refers to the ratio between NNN
and NN exchange.
Depending on the parameters of the Hamiltonians (1),

different symmetries are identified [20]. For the sake of
generality, we avoid them by restricting our analysis to a
subspace with L=3 up spins and� � 1. We fix� ¼ 0:5 for
model 2. The only remaining symmetry is parity. We take it
into account by studying only even states, which leads to
subspaces of dimensionN � ð1=2ÞL!=½ðL=3Þ!ðL� L=3Þ!�.
All data are given for L ¼ 15.
Spectrum statistics.—According to the common lore, we

analyze first the level spacing distribution PðsÞ for both
models, numerically obtained for different values of the
control parameters � and �. For model 1, PðsÞ is close to
the Poisson distribution for any value of �. For model 2,
the transition of PðsÞ from a Poisson to a Wigner-Dyson
form as � increases is shown in Fig. 1. The standard
approach of fitting PðsÞ with the Brody distribution [21]
allows us to extract the repulsion parameter � character-
izing the transition between the two distributions. From
Fig. 1, the transition for model 2 occurs at � � 0:5.
The transition of PðsÞ from a Poisson to a Wigner-Dyson

distribution is typical of nonintegrable systems of interact-
ing particles. It was also seen in Bose-Hubbard models
[22–24], which are of interest to experiments with optical
lattices. The transition can occur both due to dynamical
interaction only [22] and due to additional strong disorder
[23]. The relevance of this transition to observable physical
effects is discussed in Refs. [24].
Emergence of chaotic eigenstates.—Much more infor-

mation about the systems is contained in the structure of the
eigenstates. Our data show that as the strength of the per-
turbations V1 and V2 increases, the eigenstates of both
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FIG. 1 (color online). Left: PðsÞ for model 2 with � ¼ 0:1, 0.5
compared with the Wigner-Dyson distribution (smooth curve).
Right: Brody parameter � as a function of �.
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integrable and nonintegrable models undergo a transition
from localized to chaoticlike. Typical examples of the
amplitudes C�

n of such eigenstates with energy E� from
the center of the energy band are shown in Fig. 2. Here, the
eigenstates are given as a function of the unperturbed en-
ergy "n rather than in the basis representation, following the
one-to-one correspondence between jni and its energy "n.

In order to find the critical parameters �cr and �cr above
which the perturbation is strong and the eigenstates are
extended (in the energy shell), different approaches may be
employed. We start by analyzing the matrix elements ofH1

andH2. It is important to take into account that in each line
n of the Hamiltonians, the perturbation couples directly
only Mn unperturbed states [2,25]. We have numerically
found that at the center of the energy band,Mn � N=4 and
Mn � N for models 1 and 2, respectively, (see [26] for
more details). Thus, the Hamiltonian matrix of the inte-
grable model is more sparse than the matrix of model 2.

To determine the critical perturbation, we compare the
average value of the coupling strength, vn ¼P

m�njHnmj=Mn, of each line n with the mean level spac-
ing dn between directly coupled states. The mean level
spacing can be estimated as dn ¼ ½"max

n � "min
n �=Mn,

where "max
n ("min

n ) is the unperturbed energy corresponding
to the largest (smallest) m where Hnm � 0. Our results
show that for �>�cr � 0:5 and � > �cr � 0:5 the ratio
vn=dn becomes larger than 1 and the perturbation is con-
sidered to be strong. Notice that for model 2, the obtained
value of �cr corresponds to the onset of the Wigner-Dyson
statistics, as independently found from the level spacing
distribution. This is remarkable if we take into account that
no diagonalization was necessary to derive the above
estimates.

Strength function: From a Breit-Wigner to a Gaussian
shape.—Another way to obtain the critical values �cr and
�cr relies on the shape of SF. The latter corresponds to the
dependence of w�

n ¼ jC�
n j2 on the exact energies E� for

each fixed unperturbed energy "n. It contains information
about the energies E� that become accessible to an initial
state jni when the perturbation is turned on. Clearly, SF is
related also to the structure of EFs, since the latter is

derived from the same w�
n , but now as a function of the

unperturbed energies "n.
In quantum many-body systems, the form of SF typi-

cally changes from Breit-Wigner to Gaussian as the inter-
particle interactions increase [2,6,8]. This transition occurs
when the half-width of the Breit-Wigner distribution be-
comes comparable to the width of the energy shell. In this
case, as we show next, there emerge chaotic eigenstates
filling the whole available energy shell.
The energy shell corresponds to the distribution of states

obtained from a matrix filled only with the off-diagonal
elements of the perturbation. It is associated with the
maximal SF, that is the SF that arises when the diagonal
part of the Hamiltonian can be neglected. We verified that
the energy shell coincides with a Gaussian of variance �2

given by the second moment of the off-diagonal elements
of the matrix Hamiltonian, �2 ¼ P

m�njHnmj2 [2]. Note
that no diagonalization is required to derive this
expression.
Our numerical data confirm that the transition from a

Breit-Wigner to a Gaussian shape occurs for the same
critical values obtained above, �cr, �cr � 0:5, as indicated
in Fig. 3. In the figure, the envelopes of the SFs were
obtained by smoothing the dependence of w�

n on E� for
fixed unperturbed energies "n with n � N=2. The fit to
either a Breit-Wigner or a Gaussian form was done with
high accuracy, allowing us to discriminate between the two
functions. It is noteworthy the excellent agreement be-
tween the Gaussian fit and the Gaussian obtained simply
from the off-diagonal elements of the Hamiltonians.
Structure of eigenstates in the energy shell.—The eigen-

states may be localized, sparse, or ergodically extended in
the energy shell. The data in Fig. 4 demonstrate that for a

-4 -2 0 2 4
-0.4

0

0.4

C
nα

-0.4

0

0.4

-4 -2 0 2 4
-0.4

0

0.4

-0.4

0

0.4

-4 -2 0 2 4
ε

n

-0.2

0

0.2

C
nα

-0.2

0

0.2

-4 -2 0 2 4
ε

n

-0.1

0

0.1

-0.1

0

0.1

µ=0.2

µ=1.5 λ=1.0

λ=0.2
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sufficiently strong perturbation the eigenstates undergo a
transition from strongly localized to extended states, some-
how filling the energy shell. The transition to chaoticlike
eigenstates occurs again at the same critical parameters
�cr, �cr � 0:5. These results confirm the predictions made
on the basis of both the estimate of vn=dn and the Gaussian
form of the strength functions.

One notices that above the critical value, as shown by the
bottom panels of Fig. 4, the eigenstates of model 1, differ-
ently from those of model 2, do not fill the entire energy
shell, even for very strong perturbation. At the same token,
a close inspection of the level of delocalization of individ-
ual EFs and SFs has revealed other differences between the
two models. Overall, delocalization measures, such as the
inverse participation ratio or the Shannon entropy, show
larger fluctuations for model 1 than for model 2 [26]. This
agrees with recent results obtained for bosonic and fermi-
onic systems [15].

Statistical relaxation.—Reference [27] showed that
when the two-body interaction between particles is com-
pletely random, allowing for an analysis in terms of two-
body random ensembles, the quench dynamics can be
described analytically. In our case, the two models are
dynamical, without any randomness ab initio. Yet, we
show below that when the interaction strength exceeds
the critical value corresponding to the onset of chaoticlike
eigenstates, the theory developed in Ref. [27] works per-
fectly for both integrable and nonintegrable models. This
result is important in view of possible experimental obser-
vations in various systems of interacting spins-1=2.

By quench dynamics we mean the time evolution of
initial states corresponding to unperturbed vectors which
takes place once the interaction is turned on. To see how
the relaxation occurs, we study the time dependence of the
Shannon entropy S in the mf basis. For an initial state jn0i,
it is defined as

Sn0ðtÞ ¼ � XN
n¼1

WnðtÞ lnWnðtÞ; (2)

with WnðtÞ ¼ jP�C
�
nC

��
n0 e

�iE�tj2. To reduce fluctuations,

we average over 5 initial basis states excited in a narrow
energy range in the middle of the spectrum.
An analytical expression for Sn0ðtÞ was derived in [27],

Sn0ðtÞ ¼ �Wn0ðtÞ lnWn0ðtÞ � ½1�Wn0ðtÞ� ln
�
1�Wn0ðtÞ

Npc

�
:

(3)

Here Wn0ðtÞ is the probability for the system to stay in the

initial state jn0i and Npc is the average number of directly

coupled states. We obtain Npc numerically according to

Npc ¼ heSi, where the average h:i is performed over a long

time after the saturation of the entropy.
Figure 5 shows numerical data for the relaxation process

of both models. Initially, the entropy grows quadratically,
as given by perturbation theory. Afterwards, a clear linear
growth is observed before SðtÞ reaches relaxation. With
high accuracy the linear behavior of SðtÞ is described by the
simple relation [27],

Sn0ðtÞ � �n0 t lnMn0 : (4)

Note that Eq. (4) depends only on the elements of the
Hamiltonian: �2

n0 ¼
P

m�n0
jHn0mj2 andMn0 is the connec-

tivity of line n0. As seen in Fig. 5, the analytical expres-
sions (3) and (4) give a correct description of the entropy
growth for both models in the regime corresponding to the
onset of chaoticlike eigenstates delocalized in the energy
shell. The same relation (4) was found to emerge also for
an integrable model of interacting bosons [28].
Conclusion.—We have studied the spectrum statistics,

the structures of eigenstates and strength functions, and the
quench dynamics for two models of interacting spins,
connecting the results with the onset of chaotic eigenstates
and the emergence of statistical relaxation. The key point
of our approach is the existence of an energy shell of finite
range, inside which the eigenfunctions can be either local-
ized or extended. We have shown that the critical parame-
ters above which the eigenstates become chaoticlike can be
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equally found by simply studying the elements of the
Hamiltonian or by analyzing the shape of the strength
function. The latter provides the form of the energy shell,
thus allowing one to clearly define the notion of delocal-
ized eigenstates in the energy shell.

Our study shows that Wigner-Dyson level statistics is
not important for the onset of statistical relaxation. Indeed,
by studying the time dependence of the Shannon entropy,
we have shown that numerical data are in full agreement
with the analytical predictions of the quench dynamics,
provided the eigenstates are chaoticlike. In this case, the
relaxation process for both integrable and nonintegrable
systems becomes very similar. This result does not contra-
dict the eigenstate thermalization hypothesis, but identifies
the primary conditions for the thermalization of isolated
quantum systems. Our approach is very general and ex-
pected to apply to different systems of interacting particles,
such as those currently under theoretical and experimental
investigation.
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