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The spontaneous formation of clusters of synchronized spiking in a structureless ensemble of equal

stochastically perturbed excitable neurons with delayed coupling is demonstrated for the first time. The

effect is a consequence of a subtle interplay between interaction delays, noise, and the excitable character

of a single neuron. The dependence of the cluster properties on the time lag, noise intensity, and the

synaptic strength is investigated.
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Collective behavior in large ensembles of physiological
and inorganic systems can be reduced to that of coupled
oscillators engaged in various synchronization phenomena.
In terms of macroscopic coherent rhythms, it may either be
the case where all the units are recruited into a giant
component or the case of cluster states characterized by
exact or in phase intrasubset and lag intersubset synchro-
nization. The spontaneous onset of cluster states is of
particular interest to neuroscience [1] for the conjectured
role in information encoding, as well as for participating in
motor coordination or accompanying some neurological
disorders. The approach to clustering has mostly relied on
modeling neurons as autonomous oscillators, treating sepa-
rately the question of whether the proposed mechanisms
may be robust under noise [2] and transmission delays [3].
We explore a new mechanism which rests on the excitable
character of neuronal dynamics and mutual adjustment
between noise and time delay to yield the self-organization
into functional modules within an otherwise unstructured
network.

For the instantaneous couplings, the research on popu-
lations of excitable neurons has covered pattern formation
due to local inhomogeneity [4], or has invoked a scenario
where noise enacts a control parameter tuning the dynam-
ics of ensemble averages between the three generic global
regimes [5]. Distinct from the layout with complex con-
nection topologies, here it is demonstrated how coupling
delays do alter the latter landscape in a significant fashion,
giving rise to an effect one may dub the cluster forming
time-delay-induced coherence resonance. In part, the strat-
egy to analyze global dynamics rests on deriving the mean-
field (MF) approximation for the exact system. The likely
gain from the MF treatment is at least twofold: except for
allowing one to extrapolate what occurs in the thermody-
namic limit N ! 1, it may serve as an auxiliary means to
discriminate between the effects of noise and time
delay. Unexpectedly, the MF model undergoes a global

bifurcation at certain parameter values where the exact
system shows an onset of cluster states.
Network dynamics and the tools to analyze it.—We focus

on an N-size population of all-to-all diffusively coupled
Fitzhugh-Nagumo neurons, whose local dynamics is set by

�dxi ¼ ðxi � x3i =3� yi þ IÞdt

þ c

N

XN
j¼1

½xjðt� �Þ � xiðtÞ�dt;

dyi ¼ ðxi þ bÞdtþ ffiffiffiffiffiffiffi
2D

p
dWi; (1)

where the activator variables xi embody the membrane
potentials, while the recovery variables yi mimic the action
of the Kþ membrane gating channels. c denotes the syn-
aptic strength and � stands for the coupling delay, both
parameters for simplicity assumed homogeneous across

the ensemble. The
ffiffiffiffiffiffiffi
2D

p
dWi terms represent stochastic

increments of the independent Wiener processes, i.e., the
white noise. For the external stimulation holds I ¼ 0,
whereas the small parameter � ¼ 0:01 warrants a clear
separation between the fast and slow time scales.
Selecting b ¼ 1:05, the neurons are poised near the Hopf
bifurcation threshold b ¼ 1, which places them in an ex-
citable regime where each possesses a single equilibrium.
An adequate stimulation, be it by the noise or the interac-
tion term, may evoke a large excursion of membrane
potential, passing through the spiking and refractory states
before it loops back to rest.
To characterize the degree of correlation between the

firing events, we use primarily the interneuron spike train

coherence [6] �ij ¼ P
m
k¼1 XiðkÞXjðkÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m
k¼1 XiðkÞXjðkÞ

q
.

This requires one to split the simulation period T into
bins k of length � ¼ T=m, awarding each neuron a vari-
able XiðkÞ ¼ 1ð0Þ, contingent on whether a spike was
triggered or not within the given time bin, respectively.
As with all the quantities below, we have been careful to

PRL 108, 094101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

2 MARCH 2012

0031-9007=12=108(9)=094101(5) 094101-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.094101


exclude from calculations the transient behavior. The spike
threshold and the time bin are set to X0 ¼ 1 and � ¼
0:008, verifying that no change of the results occurred if
X0 or � were reduced. The distribution of the �ij values

may serve to distinguish between the homogeneous and
clustered network states. Another aspect we are interested
in is whether the clustered states are monostable or coex-
istent with the homogeneous ones at the given network
size. To probe this, we have monitored if the values of the
global coherence � ¼ 1

NðN�1Þ
PN

i;j¼1;i�j �ij for different

realizations at the fixed parameters clumped together, ex-
pecting bunching into distinct groups as evidence of multi-
stable behavior.

Addressing the temporal structure of the network states,
it is useful to look into the distribution of the local neuron
jitters ri [7]. They represent the normalized variations of

the interspike intervals Tk extracted from xiðtÞ, ri ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hT2

k i � hTki2
q

=hTki, with smaller values indicating better

regularity. The modality and the width of the ri distribution
over the population may serve as rough indices on how the
cluster dynamics is mutually adjusted. In the final part, we
analyze the behavior of the ensemble averages X ¼
ð1=NÞPN

i¼1 xi and Y ¼ ð1=NÞPN
i¼1 yi, where the former

increases if a larger fraction of neurons fire in synchrony.
The results for the exact system are compared to those of
the approximate MF model [8]. The latter presents a two-
dimensional set of delayed differential equations

�
dXðtÞ
dt

¼ XðtÞ � XðtÞ3=3� XðtÞ
2

�
1� c� XðtÞ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½c� 1þ XðtÞ2�2 þ 4D

q �

� YðtÞ þ c½Xðt� �Þ � XðtÞ�;
dYðtÞ
dt

¼ XðtÞ þ b; (2)

derived within a cumulant approach by employing the
Gaussian approximation.
We note that the results for the exact system refer to a

network of N ¼ 200 neurons, applying independently a
method from [9] to verify no qualitative changes in the
clustering behavior for larger N.
Results.—To get a sense of what may be the parameter

ranges to admit the cluster states, we plot the c-families of
the � curves in dependence of D for different �. Without
the delay, the curves would conform to a stereotype profile,
where one distinguishes between the three ‘‘regular’’ seg-
ments for very small, intermediate and large D, showing
first a reduced � due to incoherent oscillations, then steady
high values for the coherent ones and the decaying segment
at D where the stochastic dynamics prevails. However,
from Fig. 1 we learn how this is upheld for some �, say
� ¼ 11, but is violated manifestly at the ‘‘cluster-
resonant’’ values � ¼ 2, 6, 10. The ‘‘wells’’ seen at ap-
proximately D 2 ð0:001; 0:003Þ in Figs. 1(b) and 1(c) may

FIG. 1 (color online). Profiles of the �ðDÞ families of curves over the synaptic strengths c ¼ 0:08, 0.1, and 0.12 display strong
dependence on the delay, increasing from � ¼ 2 in (a), � ¼ 6 in (b), � ¼ 10 in (c) to � ¼ 11 in (d). The location of wells may point to
the emergence of the clustered states.

PRL 108, 094101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

2 MARCH 2012

094101-2



occur for just two reasons, as � decreases either for the
incoherent or the clustered states. The latter alternative is
supported by the coherence matrices in Fig. 3, which are
discussed shortly. The importance of theD� � adjustment
for the clustering effect is also witnessed by the c depen-
dence within the families in Fig. 1: the stronger the inter-
action term, the more salient is the picture of ‘‘irregularity’’
sections immersed into a regular curve profile. Increasing
the delay, the cluster states first occur, apparently mono-
stable, around � ¼ 2 for the small D ¼ 0:000 25, whereby
the typical phase portrait (PP) projection shows twisted
orbits with two clearly discernible segments, see Fig. 2(a).
These reflect the two macroscopic fractions of the popula-
tion firing alternately, such that the homogeneous network
dynamically splits into clusters of mutually synchronized
neurons, with the clusters locked in antiphase. The
frequency entrainment is indicated by the shape of the ri
distribution, which peaks sharply around hrim ¼ 0:01. We
tested the invariance of clustering with N via the asymp-

totic behavior of the quantity �2
N ¼ �2

X=

�
1
N

P
N
i¼1 �

2
xi

�
,

where �2
X ¼hXðtÞ2it�hXðtÞi2t and �2

xi ¼hxiðtÞ2it�hxiðtÞi2t
holds. If the cluster states endure, there should be a residual
component �ð1Þ 2 ð0; 1Þ in the large N limit [9]. For this
and the remaining cases, the onset of such a regime is
found around N � 200, implying that no qualitatively
novel phenomena occur above this system size. An inter-
esting observation is that the cluster configuration fN1; N2g,
determined by the fractions’ sizes, fluctuates around the
ratio 2:1 for different stochastic realizations and appears to
aggregate with enhancing N. For certain �, the two-cluster
state also emerges outside the D region delimiting the
incoherent and coherent global regimes. This holds for
� ¼ 5 and D 2 ð0:0004; 0:0008Þ, where the cluster layout
is also such that if one is active, the other remains refrac-
tory. The ri distribution maintains a narrow form, but its
maximum shifts to hrim � 0:19. Though one retrieves the
general picture from above, a variance is that larger �
seems to favor the partition N1=N2 � 1:1, see PP in
Fig. 2(b). The 1:1 ratio is preferred both for increasing N
and if the delay is set to � ¼ 6.

The clustered states so far may be cast as stationary in
the sense of stability against neurons switching between
the clusters. We also report on the existence of three-cluster
states that may be considered ‘‘dynamical’’, with the neu-
rons able to jump to and from clusters. Such an outcome
arises for the stronger noise D � 0:0013, once the delay is
increased to � ¼ 10. To underline the difference between
the stationary and dynamical clustered states at � ¼ 5 and
� ¼ 10, we plot side-by-side the corresponding pairwise
coherence matrices f�ijg, see Figs. 3(a) and 3(b), where the
network nodes have been rearranged by a hierarchical
clustering algorithm according to a form of metric distance
that has the most coherent nodes the closest. This makes it
explicit how the intercluster coherence for the two-cluster
state is virtually negligible with respect to the three-cluster
case. Loosely speaking, within an unstable three-part
population division, when a certain fraction is firing, the
other is refractory and the neurons in the smallest cluster
are at rest (excitable). This less clear separation is also
apparent when comparing the nodal degree distributions in
cases � ¼ 5 and � ¼ 10, obtained if one assumes f�ijg to
provide weights for the network whose links stand for the
correlated dynamics between the neurons. For � ¼ 5, the
bimodal degree distribution is clearly seen without raising
the connectivity threshold, whereas for � ¼ 10 the initially
smeared three-modal distribution refines after some thresh-
olding is performed. The rationale of dynamical clustering
may best be understood by analyzing the ri distribution in
the three-cluster state. Apart from being wider than in the
two-cluster state, it peaks at a much smaller value hrim �
0:09, implying the more regular neuron firing. For this to
hold, synchrony within the clusters has to be of intermittent
nature, such that the neurons once engaged in synchronized
spiking are much more likely to do so again.
An understanding of the clustering mechanism is re-

vealed by comparing the typical PPs of neurons participant
in the homogeneous coherent state and the clustered states,
see Figs. 4(a) and 4(b). A striking feature in the latter case
is a kink at the refractory branch of the slow manifold. The

FIG. 3 (color online). Rearranged coherence matrices for
� ¼ 5, D ¼ 0:0005, c ¼ 0:1 in (a) and � ¼ 10, D ¼ 0:0013,
c ¼ 0:1 in (b) imply the strong cluster separation in the two-
cluster states and mixing between the clusters in the three-cluster
case. Darker shading reflects higher coherence.

FIG. 2. Global PPs for the two-cluster states show twisted LCs,
whereby the two discernible segments reflect the alternate firing
of the neuron subsets. The N1=N2 ratio depends on the interplay
of D and �, as seen from the examples � ¼ 2, D ¼ 0:000 25,
c ¼ 0:1 in (a) and � ¼ 5, D ¼ 0:0005, c ¼ 0:1 in (b).
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appearance of a kink is the key manifestation of the D� �
coeffect, that consists in separating the ensemble into
clusters and maintaining the proper phase difference be-
tween them. The purpose of the kink is to keep the neurons
frustrated long enough at the refractory branch before
being allowed to slide down to its left knee. This may be
imagined as a form of lock-and-release behavior, where the
delay primarily gives rise to the first, and noise to the
second part. If a fraction of the ensemble were to move
beyond the left knee and the other were to lag behind, the
split should be amplified with each population cycle, even-
tually becoming resilient to perturbation precisely due to
trapping at the refractory branch. For trapping to be suc-
cessful, the kink has to be placed properly, approximately
where the dynamics of the representative point is most
susceptible to perturbation along the slow manifold.
Then, for a brief period, due to an influence from xi, the
evolution of yi is locally accelerated, becoming compa-
rable to a speed of change in the direction orthogonal to the
slow manifold, driven by the spiking fraction of the popu-
lation. Note that the trapping interval has to be adjusted so
that the entire population is entrained to a single frequency
of firing. The latter matches the one in the delay-free case,
which warrants stability against perturbations. The argu-
ments above and the numerical data seem to indicate how
the delays where the coherence resonance is felt the stron-
gest may be approximated by � ¼ T0=2þ nT0, with T0

being the period of coherent oscillations at � ¼ 0. As for
noise, with increasing �, D has to be adjusted to higher
values to regulate the relaxation from the kink to the slow
manifold while maintaining the entrainment to the proper
frequency. In parallel, for stronger D, the representation
cloud of the firing fraction tends to disperse more, requir-
ing a sufficient � for this effect to be averaged out.

The interplay between D and � is further highlighted by
exploring the behavior of the MF model (2). Local bifur-
cation analysis shows that the MF exhibits a succession of
super- and subthreshold Hopf bifurcations [8], which ac-
count for the transition from the stochastically stable fixed
point (FP) to the stable LC. Still, this scenario is confined

to noise higher than here: analytical and numerical means
corroborate the Hopf bifurcations to emerge about
D � 0:0025 at relevant �. Now we argue that the approxi-
mate model is in qualitative terms able to capture the
clustering effect occurring for small D, c, and �. Focus is
on the finding that the MF system predicts an onset of
cluster states by undergoing a global bifurcation for
the parameter values around � ¼ 2, D ¼ 0:000 25, and
c ¼ 0:08. At the given � and D, for c < 0:08 the approxi-
mate model has only the equilibrium, whereas around
c ’ 0:08 a large and a small LC are born via a fold-cycle
scenario. Note how, then, the PP of the MF acquires the
form qualitatively similar to those of the exact system’s in
Figs. 2(a) and 2(b). The two sections of the emerging MF
orbit mimic the action of the fractions within the full
population. This structure of the LC becomes unstable
under increasing c or �, i.e., for the stronger impact of
the interaction term. Another interesting aspect to the
approximate system is that it shows the complex LC
to coexist with the FP, viz., the basins of attraction in
Fig. 5(b), which is a feature apparently absent in the exact
model. However, the FP is located very close to the basins’
boundary which indicates it to be stochastically unstable in
the exact system for an arbitrary small noise.
We have reported on a novel phenomenon where clus-

tering within the homogeneous neural population is in-
duced by an interplay of noise and time delay. This
paradigm is distinct from most current explanations on
how the clustered states may arise, for it does not treat D
and � as destabilizing and detrimental, but rather as biased
toward the formation of dynamical structure in networks
that are unstructured both in terms of topology and local
parameters. The analyzed model is minimal yet sufficient
to display an interesting type of behavior, possible only as
an interplay of excitability, noise, and interaction delay.
Once the phenomenon is recognized as caused only by
these qualitative properties one can study the effects of
more realistic assumptions on the distribution of neuronal
properties and connection patterns. An interesting point
concerns the derived MF model, which can aid in under-
standing the precise roles played by D and �. Notably,

FIG. 4. (a) and (b) show typical PPs of neurons participating in
the homogeneous global oscillations and clustered states, re-
spectively. The latter are distinguished by a kink K, which is a
signature of the D� � coeffect. The parameter sets are � ¼ 6,
D ¼ 0:0005, c ¼ 0:1 in (a) and � ¼ 2, D ¼ 0:000 25, c ¼ 0:1
in (b).

FIG. 5 (color online). Bistability in the MF model: (a) shows
the trajectories converging either to the FP or the LC, depending
on the initial conditions, whereas in (b) are displayed the two
basins of attraction for � ¼ 2, D ¼ 0:000 25, c ¼ 0:1. EQ in-
dicates the location of the equilibrium.
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beneath the surface lies a more stratified phenomenon,
where the subtle adjustment between the parameters
affects the number of clusters, their configuration, station-
ary or dynamical character, as well as whether the cluster
states occur monostable or coexist with the homogenous
solution at the given population size. This framework could
find application within the research on neural systems and
other excitable media.
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