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It is shown that optomechanical forces can cause nonlinear self-channeling of light in a planar dual-slab

waveguide. A system of two parallel silica nanowebs, spaced �100 nm and supported inside a fiber

capillary, is studied theoretically and an iterative scheme developed to analyze its nonlinear optomechan-

ical properties. Steady-state field distributions and mechanical deformation profiles are obtained,

demonstrating that self-channeling is possible in realistic structures at launched powers as low as a

few mW. The differential optical nonlinearity of the self-channeled mode can be as much as 10� 106

times higher than the corresponding electronic Kerr nonlinearity. It is also intrinsically broadband, does

not utilize resonant effects, can be viewed as a consequence of the extreme nonlocality of the mechanical

response, and in fact is a notable example of a so-called accessible soliton.
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Attractive and repulsive optical forces can appear be-
tween two coupled waveguides when light is launched into
them [1–4]. Recently, experimental observations of trans-
verse gradient forces and mechanical bending have been
reported for a nanostructured waveguide beam [5], stacked
ring microcavities [6], a periodically patterned ‘‘zipper’’
cavity [7], and coupled waveguide beams [8]. Optical
forces can cause transverse deformations in coupled wave-
guide systems, which in turn change the effective refractive
index, giving rise to the so-called ‘‘mechanical Kerr
effect’’ [9,10].

In this Letter, we present a novel optomechanical phe-
nomenon— the self-channeling of light, which we study
theoretically in a system of two glass waveguides (‘‘nano-
webs’’) suspended between the walls of a capillary fiber.
When an optical mode is launched into the nanowebs,
optical gradient forces cause them to bend inwards or
outwards depending on the symmetry of the optical mode
profile perpendicular to the nanoweb plane [1]. This me-
chanical deflection increases the effective refractive index
of the mode, causing self-focusing of light within the
nanoweb plane and altering the radiation-induced pressure
distribution. We show that this can lead to stable self-
channeling at power levels as low as a few mW in experi-
mentally realistic structures [11]. The refractive index of

the self-channeled mode turns out to be highly sensitive to
small changes in the optical power, indeed the resulting
differential optomechanical nonlinear coefficient can ex-
ceed the � coefficient in conventional fibers by up to 7
orders of magnitude [12]. The magnitude of the optome-
chanical nonlinearity also remains high even when the
nanowebs have quite dissimilar thicknesses.
Since a point force applied at one position causes a

deflection that extends over the whole nanoweb, the opto-
mechanical elastic response is highly nonlocal—a charac-
teristic that is known to favor stable self-trapping [13].
Indeed, self-channeled modes in systems with a nonlocal
response are an example of spatial ‘‘accessible’’ solitons
[14]. A temporal analogue of such accessible solitons was
recently proposed in [15].
Figure 1 shows the generic structure under study: the z

axis points along the fiber axis and the y axis is perpen-
dicular to the nanoweb plane. The webs have width L,
thickness w and the air gap width is h. The structure
supports both TE and TM polarized modes.
For the general case of an asymmetric dual waveguide

we define a parameter s, so that the web thicknesses
become wþ s and w� s. In this case the dispersion
relation can be written in the following implicit analytical
form:

pw ¼ arctan

�
Að1þ tanhghÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ A2 � B4cos22psÞtanh2ghþ A2 þ A4

p
A2 � ð1þ B2 cos2psÞ tanhgh

�
�m� (1)

where p ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2g � n2eff

q
and g ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2eff � 1

q
are the

wave vector components in dielectric slabs with refractive
index ng and in air, respectively, and A and B are given by
A ¼ 2gp�=ðg2 � p2�2Þ and B¼ðg2þp2�2Þ=ðg2�p2�2Þ.
The parameter � ¼ 1 for TE and 1=ng

2 for TM polariza-
tion, allowing both polarizations to be conveniently treated

in a single analysis. For each value of integer m � 0 two
modes exist, one [þ sign in Eq. (1)] corresponding to a
mode with 2m field nodes and the other (� sign) to a mode
with 2mþ 1 nodes. For s ¼ 0 Eq. (1) reduces to expres-
sions for the symmetric and antisymmetric modes of a
dual-slab waveguide derived in [3].
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The electromagnetic force acting on each slab can be
calculated by means of the Maxwell stress tensor. Since it
is proportional to the intensity of light in the waveguide
mode, the field amplitudes must be related to the optical
power through the flux of the z component of the time-
averaged Poynting vector �Sz. The total optical power P and
the power density p per unit length in the x direction are
calculated as follows:

P ¼
Z 1

�1

Z 1

�1
�Szdxdy; p ¼

Z 1

�1
�Szdy: (2)

The optical gradient pressure is obtained by evaluating the
time-averaged y component of the Maxwell stress tensor
ði ¼ x; y; zÞ:
hTyyi ¼ "0ðQy�Qx�QzÞ=4; Qi ¼ jEij2þ c2�2

0jHij2:
(3)

The pressure-induced deflection �ðxÞ of a slab (thickness
w), pinned rigidly at each edge (x ¼ �L=2) to a solid glass
wall, is found using the standard plate deflection equation:

d4�ðxÞ=dx4 ¼ 12ð1� �2Þ�ðxÞ=ðEw3Þ; (4)

where E is Young’s modulus, � Poisson’s ratio, and �ðxÞ
the pressure distribution. The boundary conditions at x ¼
�L=2 are � ¼ 0 and d�=dx ¼ 0. Since the mechanical
deflection �ðxÞ varies very slowly across the breadth of the
structure, the distribution of effective refractive index
neffðxÞ can be accurately calculated using a local mode
approach, i.e., solving Eq. (1) for neffðxÞ using the local
value of hðxÞ ¼ hþ �uðxÞ þ �lðxÞ, �u and �l being the
deflection profiles of the upper and lower webs (� < 0 for
attractive forces). Once neffðxÞ is known, the transverse
distribution of the field [eðxÞ or hðxÞ for TE or TM] can
then be found by numerically solving the Helmholtz equa-
tion in the x coordinate:

d2eðxÞ=dx2 þ k20ðn2effðxÞ � n2mÞeðxÞ ¼ 0; (5)

which at the same time yields the modal index nm of the
self-guided mode.
Making use of these connections between radiation-

induced pressure, mechanical deformation, and transverse
electromagnetic field distribution, an iterative cycle of
numerical calculations can be established to seek self-
consistent self-channeled solutions. Starting with a trial
pressure profile �0ðxÞ, we calculate the deflection �ðxÞ
using (4). By solving (5) we obtain the mode index nm
and the transverse field distribution. A new pressure profile
�1ðxÞ is then calculated using (3) and the cycle restarted.
Keeping the total optical power P constant, we iterate this
procedure until it converges to a self-consistent steady-
state solution. For the parameters used in this Letter, con-
vergence is typically reached after less than ten iterations.
We now consider a structure with w ¼ 200 nm, h ¼

300 nm, and L ¼ 70 �m, made from fused silica (ng ¼
1:45). Figures 2(a) and 2(b) show the self-channeling of the
m ¼ 0 even and odd TE modes. The wavelength of the
light is 800 nm, Young’s modulus 72:5 kN=mm2, Poisson’s
ratio 0.17, and the optical power was set to 100 mW. Self-
channeling causes the nanowebs to be attracted for even
modes and repelled for odd modes. The maximum deflec-
tion amplitude is 1.4 nm for the even mode (webs bent
inward) and 2.5 nm for the odd mode (webs pushed out-
ward). These relatively small deflections are sufficient to
create a guiding index profile in the x direction.
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FIG. 2 (color). Normalized Poynting vector distributions of
selected TE self-channeled modes at a power of 100 mW.
(a) Even m ¼ 0 mode and (b) odd m ¼ 0 mode for w ¼
200 nm, h ¼ 300 nm, L ¼ 70 �m, � ¼ 800 nm, and P ¼
100 mW. (c) Higher-order self-channeled TE mode with two
lobes in the x direction (w ¼ 200 nm). (d) Higher-order self-
channeled TE mode with two lobes in each nanoweb in the y
direction (w ¼ 400 nm, h ¼ 300 nm, � ¼ 600 nm). (e) Even
and (f) odd m ¼ 0 mode for the asymmetric structure with
w1 ¼ 220 nm and w2 ¼ 180 nm, the upper web being thicker.
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FIG. 1 (color). Sketch of the dual-nanoweb fiber structure.
Light propagates in the z direction. The electric field of the
TE mode and the magnetic field of the TMmode point parallel to
the x axis.
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In this context, it is necessary to estimate the amplitude
of the vibrations induced thermally in a single nanoweb
supported inside a fiber of length Lf. The number of vibra-

tional modes of a rectangular plate [16] supported by a
mechanical resonance of quality factor Q can be estimated
as N � Lf=ðL

ffiffiffiffi
Q

p Þ. Since kBT � h�vib at ambient tem-

perature in these structures [typical resonant frequencies
�vib are in the (sub-) MHz range], thermal energy can be
expressed as Eth ¼ kBTLf=ð2L

ffiffiffiffi
Q

p Þ where kB is

Boltzmann’s constant. The deflection �max at the center
of the nanoweb, for simplicity subjected to a force F at its
center (evenly distributed over the fiber length), is �max ¼
FL3ð1� �2Þ=ð16LfEw

3Þ. Using this to calculate the stiff-

ness of the nanoweb and its vibrational energy Evib ¼
8Lfw

3Eh�2i=½L3ð1� �2Þ� and equating the result to Eth

yields a thermal deflection amplitude:

ffiffiffiffiffiffiffiffiffiffi
h�2

thi
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTL

2ð1� �2Þ
16Ew3

ffiffiffiffi
Q

p
s

� 6� 10�17 L

Q1=4w3=2
m (6)

for silica at 293 K. For Q ¼ 100 (a value measured in a
similar structure [11]), L ¼ 70 �m, and w ¼ 200 nm this
yields �th � 15 pm, indicating (since we have shown
above that deflections of order 1 nm occur at an optical
power of 100 mW) that the self-channeling process might
be disrupted by thermal vibrations at powers in the range of
1 mW and below.

Although optically induced heating of the material could
in principle also cause self-focusing effects, extensive ex-
periments on Kerr-related self-focusing in single nanoweb
fibers, at similar drive powers, have shown no evidence that
heating plays any role [17]. This is because fused silica has
a very low absorption coefficient and a very low value of
dn=dT (< 10�5 K�1).

Note that when the air gap gets smaller, the index
increases for even modes and reduces for odd modes.
Thus both modes can be localized (channeled) in the
central region of the waveguide. For the parameters
chosen, the lateral extent of the m ¼ 0 TE mode is
�20 �m (even) and �16 �m (odd). Higher-order self-
channeled modes can also exist [Fig. 2(c)]. Changing the
parameters to w ¼ 400 nm, h ¼ 300 nm, and � ¼
600 nm, a self-channeled m ¼ 1 mode appears with two
lobes across each nanoweb [Fig. 2(d)].

It is interesting to inquire how sensitive the self-
channeling is to fabrication imperfections, such as unequal
nanoweb thicknesses. In Figs. 2(e) and 2(f) the mode
profiles are plotted for a structure with web thicknesses
220 and 180 nm. It can be seen that the self-channeling is
robust against quite large degrees of asymmetry.

The power dependence of the modal index for them ¼ 0
even and odd self-channeled TE modes (w ¼ 200 nm,
h ¼ 300 nm) is presented in Fig. 3 for three different
values of L. The lower limit of P in the calculations is
determined by the need for the self-channeled mode to be

confined tightly enough in the x direction so as not to be
affected by the presence of the supporting capillary. By
appropriate choice of parameters, powers as small as
10 mW can be sufficient to achieve optomechanical self-
channeling in a realistic structure.
For both even and odd modes the modal index increases

monotonically with power, the slope being steeper for
wider, i.e., mechanically more compliant, structures. The
differential change of modal index with variations in power
can be regarded as a measure of nonlinearity of the system.
We therefore define a differential optomechanical nonline-
arity �om:

�om ¼ k0@nm=@P W�1km�1 (7)

and plot its value as a function of the optical bias power in
Fig. 3(a) for the even and Fig. 3(b) for the odd m ¼ 0 TE
modes.
The intrinsic (i.e., electronic) � coefficient can be calcu-

lated from the nonlinear refractive index of silica and the
effective nonlinear mode area [18]. For the dual-web struc-
ture analyzed above it is �1 W�1 km�1, lying between
the value typical of a small-core photonic crystal fiber
(PCF) (� 0:2� 103 W�1 km�1) and that of a hollow-
core PCF (� 2� 10�2 W�1 km�1) [19]. With peak values

FIG. 3 (color). Power dependence of the modal index and the
differential optomechanical nonlinearity. The modal indices
converge to the same value at zero power. (a) Even m ¼ 0 TE
mode in a structure with w ¼ 200 nm, h ¼ 300 nm, � ¼
800 nm, and three different values of width L: 60 �m (dashed
line), 70 �m (solid line), and 80 �m (dash-dotted line). (b) is
the same as (a) for the odd m ¼ 0 TE mode.
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of order �108 W�1 km�1, �om is more than 10� 106

times larger than the Kerr nonlinearity.
Although asymmetry causes dephasing and weakens the

interaction between the waveguides, it turns out that even
when it is strong (e.g., w1 ¼ 250 nm, w2 ¼ 150 nm) the
nonlinear coefficient �om remains very high, dropping to
roughly one third its value in the symmetric structure for
the even and to two thirds for the odd m ¼ 0 TE mode,
which means that fabrication tolerances for these structures
can be quite relaxed.

The even and odd modes exhibit different types of self-
channeling behavior. In Fig. 4 �om is plotted as a function
of h and wavelength for L ¼ 70 �m, w ¼ 200 nm, and
P ¼ 300 mW. The maximum value of the nonlinearity for
the given range of parameters reaches �109 W�1 km�1

for the even m ¼ 0 TE mode [Fig. 4(a)] and �5�
108 W�1 km�1 for the odd mode [Fig. 4(b)].
Furthermore, the optical gradient force increases as the
web separation decreases [1]. The m ¼ 0 odd mode, how-
ever, cuts off when h falls below a certain value, for
example, at w ¼ 200 nm and � ¼ 1:3 �m the odd TE

mode disappears at h & 250 nm. This cutoff spacing de-
creases with wavelength, as indicated by the red curve in
Fig. 4(b). A structure in which only the even mode is self-
channeled is potentially very interesting experimentally,
since the system will become single mode, making mea-
surements much more straightforward. Because of weaker
confinement in the y direction, the odd mode shows maxi-
mum nonlinearity at longer wavelength compared to the
even mode. Note that at shorter wavelengths the modes are
more tightly confined in the y direction, causing
the nonlinear coefficient to fall off more rapidly with
increasing h.
The TM modes show qualitatively similar behavior,

except that at very small spacings (h < 100 nm) the
m ¼ 0 even TM mode experiences higher radiation pres-
sure than the even TE mode [3]. When the distance be-
tween the webs is decreased further, or alternatively the
optical bias power is increased, the webs will touch (in case
of even modes), causing a discontinuity in the optome-
chanical nonlinearity.
As mentioned above, the stability of the self-channeled

modes and the very large differential nonlinear coefficient
is a consequence of the extreme nonlocality of the me-
chanical response. Although the self-channeling nonline-
arity is much stronger than the electronic Kerr nonlinearity
of the glass, it is, of course, much slower. The time constant
of the optomechanical nonlinear response is limited by the
mechanical resonant frequencies of the dual-nanoweb
[(sub-) MHz range, response time �1–10 �s], which are,
however, considerably faster than in other nonlocal media
such as liquid crystals (� 1 ms, [20]) and photorefractive
materials (� 1 s, [21]). In addition, the nonlinear response
can be further enhanced by modulating the light at the
acoustic resonant frequency, as demonstrated in [11].
The main purpose of this Letter has been to show for the

first time that steady-state self-channeled modes can exist
in this dual-nanoweb system. We now briefly indicate how
the analysis can be extended to describe the dynamics of
the self-channeling process. A paraxial model can be con-
structed for the propagation of an optical beam with inten-
sity jAðx; zÞj2:

2ik@zAþ @xxAþ 2k2ð�n=neÞA ¼ 0 (8)

where k ¼ !ne=c, ne being the effective modal index of
the undistorted nanoweb pair and �n ¼ neffðxÞ � ne the
perturbation due to optomechanical forces. At equilibrium,
for a given power P, the pressure-induced deformation in
the vicinity of x ¼ 0 can be approximated by a parabolic
function, leading to �nðxÞ � n0ðPÞ � n2ðPÞx2. Explicit
expressions for n0ðPÞ and n2ðPÞ can then be obtained
from a second order expansion in x of the Green’s function
of Eq. (4): n0ðPÞ ¼ ðL=2Þ3 P=24, and n2ðPÞ ¼ LP=16
(further details will be reported elsewhere). The fact that
�nðxÞ is a function of power, and not of local field inten-
sity, allows us to consider the optomechanical solitons as a

FIG. 4 (color). Contours of constant optomechanical nonlinear
coefficient �om as a function of gap width h and wavelength (in
units of 106 W�1 km�1). The nonlinear coefficient based on the
Kerr effect is only �1 W�1 km�1. (a) Nonlinearity of the even
m ¼ 0 TE mode of the dual-nanoweb waveguide with web
thickness w ¼ 200 nm, width L ¼ 70 �m, and optical bias
power P ¼ 300 mW. (b) Nonlinearity of the odd m ¼ 0 TE
mode, red curve showing the cutoff condition for the odd mode
at given parameters.
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unique realization of the so-called accessible solitons [14],
which are self-trapped beams in the presence of a highly
nonlocal response. A whole family of Hermite-Gaussian
solutions, including fundamental and higher-order spatial
solitons can be retrieved. A detailed study of the dynamics
of these nonlocal self-trapped beams, and the investigation
of other features, like collisions and modulational insta-
bility, will be reported in a future publication.

In conclusion, dual-nanoweb fibers are a promising ve-
hicle for attaining ultrahigh nonlinear coefficients in opti-
cal fibers. In contrast to previously reported nonlocal
nonlinear systems [20,21], they allow the formation of
stable self-trapped modes that can propagate over many
meters along a flexible pathway. This may permit the
observation of spatiotemporal solitons (light bullets), and
related phenomena such as supercontinuum generation in-
side spatially self-trapped beams.
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No.201766 and the Humboldt foundation.

[1] M. L. Povinelli et al., Opt. Lett. 30, 3042 (2005).
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