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We study modulational instability in nonlinear arrays of subwavelength metallic nanoparticles and

analyze numerically nonlinear scenarios of the instability development. We demonstrate that modulational

instability can lead to the formation of regular periodic or quasiperiodic modulations of the polarization.

We reveal that such nonlinear nanoparticle arrays can support long-lived standing and moving oscillating

nonlinear localized modes—plasmon oscillons.
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Nonlinearity-induced instabilities are observed in many
different branches of physics, and they provide probably
the most dramatic manifestation of strong nonlinear effects
that can occur in nature. Modulational instability (MI) in
optics manifests itself in a decay of broad optical beams (or
quasicontinuous wave pulses) into optical filaments (or
pulse trains) [1], and such effects are well documented in
both theory and experiment. MI is also observed for par-
tially spatially incoherent light beams in noninstantaneous
nonlinear media with the pattern formation from noise [2].
It is expected that the study of subwavelength nonlinear
systems such as metallic nanowires or nanoparticle arrays
may bring many new features to the physics of MI and the
scenario of its development; however, such effects were
never studied before.

Over the past decade, surface plasmon polaritons (or
plasmons) were suggested as the means to overcome the
diffraction limit in optical systems. In particular, by using
plasmons excited in a chain of resonantly coupled metallic
nanoparticles [3], one can spatially confine and manipulate
optical energy over distances much smaller than the wave-
length. In addition, strong geometric confinement can
boost efficiency of nonlinear optical effects, including the
existence of subwavelength solitons [4].

In this Letter, we study modulational instability in sub-
wavelength nonlinear systems for an array of optically
driven metallic nanoparticles [5–8] with a nonlinear re-
sponse. We demonstrate the existence of novel types of
nonlinear effects in such subwavelength systems never
discussed before, including the generation of regular or
quasiperiodic polarization patterns and oscillating local-
ized modes which can be termed oscillons, in analogy with
the similar localized modes excited in driven granular
materials [9] and Newtonian fluids [10].

Figure 1 shows the geometry of our problem: a chain of
identical spherical silver nanoparticles is embedded into a
fused silica host medium with permittivity "h and driven
by an external optical field with the frequency close to
the frequency of the surface plasmon resonance of an

individual particle. We assume that the particle radius
and distance between the particles are a ¼ 10 nm and
d ¼ 30 nm, respectively. The ratio a=d satisfies the con-
dition a=d � 1=3, so that we can employ the point dipole
approximation [5]. In the optical spectral range, a linear
part of a silver dielectric constant can be written in a
generalized Drude form "LAg ¼ "1 �!2

p=½!ð!� i�Þ�,
where "1 ¼ 4:96, @!p ¼ 9:54 eV, @� ¼ 0:055 eV [11]

[hereinafter we accept expði!tÞ time dependence],
whereas dispersion of SiO2 is neglected since "h ’ 2:15
for wavelengths 350–450 nm [12]. The nonlinear dielectric

constant of silver is "NLAg ¼ "LAg þ �ð3ÞjEðinÞ
n j2, where EðinÞ

n

is the local field inside nth particle. We keep only cubic
susceptibility due to spherical symmetry of particles.
Currently, there is no reliable theoretical model describing
the nonlinear optical response of metal nanoparticles;

however, experimental data show that �ð3Þ depends on
many factors, including duration and frequency of the
external excitation as well as particle characteristics them-
selves (metal type and size) [13]. According to the
model suggested in Ref. [14] and confirmed in experiment,
10 nm radii Ag spheres possess a remarkably high and

purely real cubic susceptibility �ð3Þ ’ 3� 10�9 esu, in
comparison to which the cubic nonlinearity of SiO2 is
weak (� 10�15 esu [15]).

FIG. 1 (color online). Schematic sketch demonstrating geome-
try of the studied problem. Arrows indicate particle polarizations
after MI development.
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We study nonlinear dynamics of our chain by employing
the dispersion relation method [16] that allows deriving a
system of coupled equations for slowly varying amplitudes
of the particle dipole moments. This approach is based on
the assumption that in the system there are small and large
time scales, which in our case is fulfilled automatically
since each particle acts as a resonantly excited oscillator
with slow (in comparison with the light period) inertial
response.

We start with the standard expression for the electric
dipole moment induced in the nth particle written for
Fourier transforms,

�nð!Þ�1pn ¼ EðexÞ
n þ X

m�n

En;m; (1)

where

�nð!Þ ¼ "h

� "NLAg ð!Þ þ 2"h

a3½"NLAg ð!Þ � "h�
þ i

2

3
k3
��1

is the electric polarizability of the nth particle, EðexÞ
n is the

external electric field acting on the nth particle,

En;m ¼
�
ð1þ ikdjn�mjÞ 3ðr0 � pmÞr0 � pm

"hjn�mj3d3

þ k2
pm � ðr0 � pmÞr0

"hjn�mjd
�
e�ikdjn�mj

is in charge of dipole-dipole interaction between the mth
and nth particles, k ¼ !=c

ffiffiffiffiffi
"h

p
, and r0 is the unit vector

pointing from the mth to the nth particle. Assuming that

�ð3ÞjEðinÞ
n j2 � 1 and �=!0 � 1, we decompose �nð!Þ�1

in the vicinity of the frequency of the surface plasmon
resonance of an individual particle,!0 ¼ !p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"1 þ 2"h

p
,

and keep the first-order terms involving time derivatives
for describing (actually small) broadening of the particle
polarization spectrum,

��1
n � �nð!0Þ�1 þ d��1

n

d!

��������!¼!0

�
�!� i

d

dt

�
; (2)

where �! is the frequency shift from the resonance value.

Having expressed EðinÞ
n via pn, we substitute Eq. (2) into

Eq. (1) and writeEn;m in the same order of the perturbation

theory and obtain the equations

�i
dP?

n

d�
þ ð�i�þ�þ jPnj2ÞP?

n þ X

m�n

G?
n;mP

?
m ¼ E?

n ;

�i
dPk

n

d�
þ ð�i�þ�þ jPnj2ÞPk

n þ
X

m�n

Gk
n;mP

k
m ¼ Ek

n;

(3)

where

G?
n;m ¼ �

2

�
ðk0dÞ2 � ik0d

jn�mj �
1

jn�mj2
�
e�ik0djn�mj

jn�mj ;

Gk
n;m ¼ �

�
ik0d

jn�mj þ
1

jn�mj2
�
e�ik0djn�mj

jn�mj ;

P?;k
n ¼ p?;k

n

ffiffiffiffiffiffiffiffi
�ð3Þ

q
=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð"1 þ 2"hÞ
p

"ha
3Þ and E?;k

n ¼
�3"h

ffiffiffiffiffiffiffiffi
�ð3Þ

q
EðexÞ?;k
n =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð"1 þ 2"hÞ3

p
are dimensionless

slowly varying amplitudes of the particle dipole moments
and external electric field, respectively, the indices ‘‘?’’
and ‘‘k’’ stand for the transverse and longitudinal compo-

nents with respect to the chain axis, � ¼ 3"h
"1þ2"h

ðadÞ3,
jPnj2¼jP?

n j2þjPk
nj2, �¼�=ð2!0Þþðk0aÞ3"h=ð"1þ2"hÞ

describes thermal and radiation losses of particles, k0 ¼
!0=c

ffiffiffiffiffi
"h

p
, � ¼ ð!�!0Þ=!0, and � ¼ !0t. Equation (3)

describes temporal nonlinear dynamics of a chain of me-
tallic nanoparticles driven by arbitrary external optical
field with the frequency !�!0. We stress that the sug-
gested model takes into account all particle interactions
through the dipole fields, and it can be applied to both finite
and infinite chains, being also extended to higher
dimensions.
First, we consider an infinite chain. For the stationary

unbiased linear case, when d=d� ¼ 0 and E?;k
n ¼ 0, we

look for solutions in the form P?;k
n � expð�inKdÞ, and

from Eq. (3) we find well-known dispersion relations for
transverse and longitudinal eigenmodes of the system [7],
shown in Fig. 2. Taking into account nonlinearity just shifts
the dispersion curves along the frequency axis. The light
line, which for � � 1 takes the form k0 ¼ !0=c

ffiffiffiffiffi
"h

p
,

divides the eigenmodes into fast (with K < k0) and slow
(with K > k0) experienced strong and weak radiation
damping, respectively. Logarithmic singularity which

FIG. 2 (color online). Nonlinear dispersions of (a) longitudinal
and (b) transverse eigenmodes of an infinite chain. Dashed
curves correspond to the linear limit. Vertical dashed line
in (b) marks the light line, k0 ¼ !0=c

ffiffiffiffiffiffi
"h

p
.
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occurred at K ¼ k0 for the transverse modes is caused by
the phase matching between the chain mode and the plane
wave traveling in the host medium.

To study MI, we excite the chain by an homogenous
electric field with one of the two polarizations:

(i) En ¼ ðE?
0 ; 0Þ or (ii) En ¼ ð0; Ek

0Þ. In this case, all

particle dipole moments remain the same, P?;k
n ¼ P?;k

0 ,

and the system stationary states can be written as follows:

�
�i�þ�þ X1

j¼1

A?;k
j þ jP?;k

0 j2
�
P?;k
0 ¼ E?;k

0 ; (4)

where A?
j ¼ �½ðk0dÞ2j�1 � ik0dj

�2 � j�3� expð�ik0djÞ
and Ak

j ¼ 2�ðik0dj�2 þ j�3Þ expð�ik0djÞ. A transition

from G?;k
n;m to A?;k

j has been made via the replacement

jn�mj ¼ j and taking into account the symmetry

structure of the series. When �<�Re
P1

j¼1 A
?;k
j �

ffiffiffi
3

p ð�� Im
P1

j¼1 A
?;k
j Þ, the polarization P?;k

0 becomes a

three-valued function of E?;k
0 , leading to bistability.

Next, we analyze linear stability of the stationary states
with respect to weak spatiotemporal modulations and de-
rive the expression for the instability growth rate,

�?;k ¼ ~�?;k þ
�
jP?;k

0 j4

�
�
2jP?;k

0 j2 þ�þ Re
X1

j¼1

B?;k
j

�
2
�
1=2

;

where ~�?;k ¼ Im
P1

j¼1 B
?;k
j � �, B?;k

j ¼ A?;k
j cosðKdjÞ.

Thus, the initial nonlinear homogenous states (4) become
unstable provided �?;k > 0. The stability depends on the

external field parameters E?;k
0 and � as well as on the

modulation wave number K.
Next, we consider the case of the longitudinal excitation

in detail. The condition �k ¼ 0 at any K defines the

boundaries of MI in the plane ð�; jEk
0j2Þ shown in

Fig. 3(a). Interestingly, the middle and upper branches in

the bistable region of dependency Pk
0ðEk

0Þ also correspond

to MI, but the development inside the bistability region
cannot be reached because the middle branch is unstable,
while the system transition from the lower to upper branch
itself initiates appearance of MI.

Figure 3(b) shows a contour map of �k in the plane

ðKd; jEk
0j2Þ at � ¼ �0:07. Remarkably, MI takes place

only for slow eigenmodes of the chain. As follows from
Fig. 3(b), one can manage eigenmode spectrum excited

during MI growth by varying jEk
0j2 only. In particular,

when jEk
0j2 is chosen to be close to the lower or upper

edge of the MI domain, just one spatial harmonic should be
excited, with correspondingly Kd ’ 0:7 or Kd ¼ �.

However, the linear stability analysis does not provide
any information about the subsequent evolution of the

unstable system, especially when the external field excites
a broad spectrum of eigenmodes. To analyze those scenar-
ios, we perform numerical simulations of Eq. (3) for a
finite chain (with 100 nanoparticles) at zero initial condi-
tions. Edge effects play a role of small perturbations
needed for generating MI. The amplitude of the homoge-
neous external field is supposed to be slowly growing to the

saturation level Ek
0 (which is reached at � � 100) lying in

the MI zone.
Characteristic results are summarized in Figs. 4(a)–4(d).

When Ek
0 crosses the lower edge of the MI domain [de-

picted by the dashed line (1) in Fig. 3(b)], we observe that
MI results in the excitation of one eigenmode with Kd ’
0:7 [see Fig. 4(a)], in accord with the prediction of the
linear stability analysis. The excited eigenmode acts as
modulation of the initial almost homogenous state which

becomes unstable. That is why RePk
n tend to be predomi-

nantly positive. They are just biased by the external field.
Figure 4(b) shows the case when the external field of

larger amplitude excites a wide eigenmode spectrum [in-
dicated by the dashed line (2) in Fig. 3(b)] [17]. Here, MI
leads to the formation of a stationary higher-order mode
along with oscillating localized states. Some of them ap-
peared to be unstable and decay, whereas others remain
stable. Importantly, such solitonlike localized modes may
be at rest or they can drift slowly along the chain, as shown
in Figs. 4(b) and 4(c). We notice that these oscillatory
localized states in a driven chain are very similar to spatio-
temporal structures termed oscillons observed previously in
other types of dissipative systems [9,10], and we refer to
them as plasmon oscillons. We point out that the plasmon
oscillons may exist not only in the form of solitary states,
but they also can create patterns, as illustrated in Fig. 4(d)
[17]. We have studied some of the properties of such oscil-
latory states, and the results will be published elsewhere.
Finally, we conduct a similar analysis for the case of the

transversal excitation. Figure 5(a) shows the corresponding

bistability

m
odulation

+
oscillons

m
odulation

(a)

0K=k

(b)
(1)

(2)

FIG. 3 (color online). (a) Bifurcation diagram showing bista-
bility regime and different scenarios of modulation instability
development for longitudinal excitations, as a function of � and

jEk
0j2. (b) Contour map of �k on the plane ðKd; jEk

0j2Þ at � ¼
�0:07. Horizontal dashed lines (1) and (2) mark the intensities
of the external light used in numerical simulations of Eq. (3)
shown in Figs. 4(a) and 4(b), respectively.
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bifurcation diagram. In contrast to the longitudinal case,
the MI region is fully placed inside the bistability domain
capturing a part of the lower branch in the dependence
P?
0 ðE?

0 Þ. According to the contour map of �? in the plane

ðKd; jE?
0 j2Þ shown in Fig. 5(b), the spectrum of excited

eigenmodes can be tuned by varying the value of jE?
0 j2, in

analogy with the longitudinal case. Nevertheless, the width
of the spectrum weakly affects the scenarios of the MI
development. Numerical simulations of Eq. (3) demon-
strate that, independently of the value of E?

0 , the growth

of MI results in the switching of the system from the lower
to the upper branch in the bistability region of P?

0 ðE?
0 Þ. In

the case of a finite chain, MI is accompanied by a pair of
switching waves (kinks) at the edges which move towards
each other, as shown in Fig. 5(c) [17].

The observation of MI requires high illuminating
powers, higher than 10 MW=cm2, that could cause thermal
damage to particles. To estimate maximal duration of the
external laser pulse, we use the results of previous studies

on the ablation thresholds for gold films [18] providing
values of 1.6 and 0:6 J=cm2 for 1 ns and 1 ps pulses,
respectively. Gold demonstrates stronger thermal losses
than silver at optical frequencies. That is why these data
are completely acceptable. Taking into account amplifica-
tion of the electric field inside nanoparticles due to surface
plasmon resonance, we come to the external threshold
intensities of 3:6 MW=cm2 and 1:3 GW=cm2 correspond-
ing to 1 ns and 1 ps pulses, respectively. Thus, ablation of
silver particles will not be critical at least until pulse
durations of 1 ps. As the characteristic time of the MI
growth is of ð�?;k!0Þ�1 ’ 10 fs, which is much less than

the maximal pulse duration, all predicted effects seem
readily observable in experiment.
In conclusion, we have studied theoretically modula-

tional instability in arrays of subwavelength metallic nano-
particles and analyzed numerically the development of
such instabilities beyond the linear approximation. We
have observed that modulational instability can be en-
hanced substantially by the geometric confinement, and it
can lead to the formation of regular periodic or quasiperi-
odic polarization patterns. We have observed the genera-
tion of long-lived standing and moving oscillating
nonlinear localized modes in the form of plasmon oscil-
lons. The experimental observation of the predicted mod-
ulational instability can provide a prominent approach to

FIG. 4 (color online). Dynamics of RePk
n obtained by numeri-

cal simulations of Eq. (3) for a finite chain excited longitudinally

with (a) � ¼ �0:07, jEk
0j2 ¼ 0:1� 10�4, (b) � ¼ �0:07,

jEk
0j2 ¼ 4:9� 10�4, (c) � ¼ �0:02, jEk

0j2 ¼ 2:65� 10�4, and

(d) � ¼ �0:09 and jEk
0j2 ¼ 0:11� 10�4.
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FIG. 5 (color online). (a) Bifurcation diagram for transverse
excitation. (b) Contour map of �? on the plane of parameters
ðKd; jE?

0 j2Þ at � ¼ �0:07. (c) Snapshot of ReP?
n at � ¼ 700

obtained numerically from Eq. (3) with � ¼ �0:07
and jE?

0 j2 ¼ 1:5� 10�4, indicated in (b) by a horizontal

dashed line. Points joined by dashed lines give a guide for
the eye.
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achieve subwavelength confinement of the optical fields
guided by plasmonic nanostructures.
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