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We experimentally study anomalous diffusion of ultracold atoms in a one dimensional polarization

optical lattice. The atomic spatial distribution is recorded at different times and its dynamics and shape are

analyzed. We find that the width of the cloud exhibits a power-law time dependence with an exponent that

depends on the lattice depth. Moreover, the distribution exhibits fractional self-similarity with the same

characteristic exponent. The self-similar shape of the distribution is found to be well fitted by a Lévy

distribution, but with a characteristic exponent that differs from the temporal one. Numerical simulations

suggest that this is due to long trapping times in the lattice and correlations between the atom’s velocity

and flight duration.
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Diffusion is a phenomenon encountered in almost every
branch of physics. Its ubiquitousness stems from the central
limit theorem, which states that a sum of random variables
is distributed normally as the number of addends increases.
It holds, however, only when the distribution of the varia-
bles has a finite variance. When this assumption does not
hold, i.e., for heavy-tailed distributions with asymptotic
power-law behavior with an exponent �þ 1 with 0<�<
2, the sum converges instead to a Lévy distribution L�. A
diffusion process which results in such non-Gaussian spa-
tial distribution is usually regarded as anomalous [1].
Heavy-tailed distributions are found in many fields, from
animals foraging strategies [2], to the prices of commodities
and stocks [3]. In physics they emerge in situations where
there is no characteristic length scale, such as near phase
transitions [4], in turbulent flow [5], in quantum phase
diffusion [6] or when a system is out of thermal equilibrium
[7]. In fact, anomalous transport properties are intimately
linked to nonlinear chaotic dynamics which naturally ap-
pears in many physical systems [8,9].

A simple diffusion model we have in mind is that of
particles in real space, each having a velocity which fluc-
tuates in time due to interaction with a bath. After some
time the particles’ position is distributed as Wðx; tÞ. The
characteristic width of the ensemble, e.g., the full width at
half the maximum (FWHM), usually scales as a power-law

t1=�. Anomalous diffusion can arise when the distribution
of velocities has heavy tails, and almost always results in
� � 2 [1]. The theoretical challenge is to connect the
microscopic physics to the evolution of the distribution
Wðx; tÞ. The experimental challenge is to measure these
distributions in a well controlled and isolated environment.
In this work we meet this challenge by measuring anoma-
lous diffusion of laser cooled atoms in a polarization
optical lattice [10–13]. In this system the steady state
atomic velocity distribution was shown both theoretically
and experimentally to follow a power law, with an expo-
nent that depends on the lattice depth [11,12,14]. It was

also predicted that the real space diffusive motion of the
atoms in such a lattice is anomalous for a wide range of
lattice parameters [13]. The onset of anomalous transport
characteristics was observed with a single trapped ion [15].
However, a measurement of the distributionWðx; tÞ and its
anomalous dynamics was not reported to date.
Here we report such a measurement in one dimension

with an ensemble of ultracold 87Rb atoms. By setting out
with a very small atomic cloud and recording the longitu-
dinal density distribution after different waiting times, we
are able to directly measure anomalous dynamics in the
lattice. We find that the width of the distribution exhibits a
power-law time dependence, from which a characteristic
exponent can be extracted. The value of this exponent
depends on the lattice depth. Furthermore, we show that
the density distribution at different times exhibits self-
similarity with the same characteristic exponent. The
self-similar shape of the distribution is found to be very
well fitted by a Lévy function. However, the characteristic
exponent extracted from this fit is significantly smaller than
the exponent extracted from the dynamics. We investigate
this point using classical and quantum Monte Carlo simu-
lations and find that it originates from correlations between
the atom’s velocity and the corresponding time it spends
untrapped in a particular lattice site, combined with heavy-
tailed distribution of the durations in which it is trapped by
the lattice.
The apparatus is depicted schematically in Fig. 1(a). In

each experiment,�1:5� 106 87Rb atoms are prepared in a
cigar-shaped crossed dipole trap with an aspect ratio of
1:3:9 and a radial oscillation frequency of 2�� 420 Hz
(for more details regarding the apparatus see Ref. [16]).
The Sisyphus lattice is created by two counterpropagating
lattice beams with identical wavelength and orthogonal
linear polarizations [10]. These beams originate from an
external cavity diode laser whose frequency is locked to an
atomic transition and detuned �66 MHz relative to
the transition between states 52S1=2, F ¼ 2 and 52P3=2,
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F0 ¼ 3. The atomic cloud has its long axis aligned parallel
to the lattice beams. The lattice depth is calculated from the
measured beam’s intensity and waist of 1.1 mm, and using
a saturation intensity of 3:6 mW=cm2. Before switching on
the lattice, the atomic cloud has a temperature of 12 �K
and a maximum phase space density of 1:7� 10�3. To
counteract gravitation and improve the signal to noise
ratio, the motion of the atoms is confined to the longitudi-
nal direction by superimposing the lattice with a ‘‘tube’’
trap, namely, a Gaussian beam with a waist of �120 �m
such that the Rayleigh range is much larger than typical
diffusion distances we record. Both the crossed dipole trap
and tube trap originate from a single frequency ytterbium
fiber laser at a wavelength of 1:06 �m, but their frequen-
cies are shifted relative to each other by more than 20 MHz
to prevent standing waves. The power of the tube trap beam
is 10 W.

The lattice is turned on 1 ms before the crossed dipole
trap is turned off, during which the atoms equilibrate with
the lattice. The average rate of photons scattered by each
atom from the lattice is �104 s�1, much larger than the
initial maximal average elastic collisions rate of 190 s�1.
This is important since elastic collisions lead to an unde-
sirable thermal equilibrium. We define t ¼ 0 as the time at

which the crossed dipole trap is switched off and the atoms
start diffusing in the lattice. The initial size of the cloud is
�200 �m, much smaller than the typical diffusion dis-
tances. We take a series of absorption images after different
waiting times, an example of which in a 4:8Er deep lattice
is depicted in Fig. 1(b).
A convenient and useful theoretical framework which

describes a broad range of anomalous diffusion processes
is the fractional diffusion equation (FDE) [17]:

@Wðx; tÞ
@t

¼ D1��
t K

�
�D

�
x Wðx; tÞ; (1)

whereWðx; tÞ is the atomic distribution at time t, D�
x is the

Weyl operator describing a fractional derivative in space

and similarlyD1��
t is the fractional time derivative.K�

� is a

generalized diffusion constant having the dimensions of
cm�=s�. For � ¼ 2 and � ¼ 1 this equation reduces to a
normal diffusion equation. �< 2 corresponds to long
spatial jumps (also referred to as Lévy flights), whereas
�< 1 corresponds to long dwelling times between jumps.
The solution for the kernel G��ðx; tÞ of this equation can

be written in terms of Fox functions [18]. A general prop-
erty of the kernel is its time and space scaling [17,18]

G��ðx; tÞ ¼ t��=� ~G��ðxt��=�Þ; (2)

where ~G�� is the reduced kernel function.

One conclusion that can be immediately drawn from
Eq. (2) is that the typical width of the distribution should

scale as t1=�, with a dynamical diffusion exponent given by
� ¼ �=�. To test this, we plot in Fig. 2 on a log-log scale
the FWHM extracted from the data as a function of time for
different lattice depths. The curves are approximately lin-
ear, indicating that indeed thewidth scales as a power-law in
time. Furthermore, the slope of each curve is different,
showing that the diffusion exponent depends on the lattice
depth, as predicted [11,12]. We fit each of these curves with
a line, and from its slope we extract the diffusion exponent.
The results are plotted as squares in Fig. 3, and demonstrate
that the whole range of fractional diffusion exponents is
accessible in our experiment by changing the lattice beams
power. Note that since in the radial direction there is no
cooling, atoms are eventually lost from the trap due to
spontaneous emission. Owing to the large Rayleigh range
of the tube trap, there is almost no mixing between the axial
and radial velocity distributions and therefore the radial loss
does not distort the axial spatial distribution. Nevertheless,
we use the data only as long as at least 10% of the atoms
remain in the trap. Increasing this number to 30% changes
only the 3 largest points in Fig. 3 by up to 25%.
Another important conclusion from Eq. (2) is that the

distribution should exhibit a self-similar scaling with re-

spect to xt�1=�, regardless of its exact shape. An example
of this property is shown in the inset of Fig. 4. When using
the appropriate �, all experimental data taken at different
times collapse to the same curve when the x and y axes are

FIG. 1 (color online). (a) The experimental setup as seen from
above. The atoms are released from a small crossed dipole trap
into a second far-off-resonance trap with a very elongated aspect
ratio which confine their motion to a single direction (tube trap).
This trap is superimposed with the two counterpropagating
Sisyphus lattice beams which induce the diffusive motion.
After a chosen time, the atomic density is recorded using
absorption imaging technique. Each image gives the column
two dimensional density, and we integrate over the radial direc-
tions to obtain the axial atomic distribution. (b) Atomic distri-
butions after different diffusion times in a 4:8Er deep lattice.
Each measurement is repeated 20 times and averaged to improve
the signal to noise ratio.
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rescaled according to Eq. (2). This property can be used to
extract the dynamical exponent; we employ an L1-type
measure of the self-similarity,

mð�Þ ¼ X

i

R1
�1 j ~Wiðx; �Þ � �Wðx; �ÞjdxR1

�1 �Wðx; �Þdx ; (3)

where ~Wiðx; �Þ ¼ t1=�i Wðxt1=�i ; tiÞ are rescaling of the se-
ries of distributions Wðx; tiÞ measured at different times,
and �Wðx; �Þ is their average. In Fig. 4 we depict this
measure as a function of � for three lattice depths. For
each of these curves there is a single minimum whose
position is shifted in accordance with the lattice depth.
We interpret the minimum as the most probable value for
the diffusion exponent. This value is plotted as a function
of the lattice depth in Fig. 3. The diffusion exponents
obtained by the self-similarity method and by fitting the
FWHM to a power law agree to within the uncertainty.

Up to this point we have analyzed the temporal behavior
of the atomic distribution, and now we turn to study its
shape. Motivated by the fact that for � ¼ 1 the solution for
the kernel of Eq. (1) is the Lévy stable law L� [17,18], we
use the latter as a fitting function. In Fig. 5 we depict the
shape exponent, �, extracted from these fits as a function
of the diffusion time, for 3 characteristic lattices. In all
three lattices the shape exponent converges to an asymp-
totic value on a time scale of 10 ms. The inset shows the fits
after 30 ms of diffusion. The Lévy distributions fit the data

very well with an average r square of 0.96 and an uncer-
tainty in the fitted � at a 95% confidence level of �3%.
The shape exponent is depicted as triangles in Fig. 3. At
very shallow lattices it approaches 2; this is expected, since
for any finite observation time there are lattices which are
too weak for the atoms to reach equilibrium. In deeper
lattices, on the other hand, we consistently find that the
shape exponent is significantly smaller than the dynamical
exponents, and, in particular, smaller than 1. Similar results
are obtained if the tail of the spatial distributions is fitted
with a power law instead of with a Lévy distribution.
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FIG. 4 (color online). The measure of the self-similarity, m, as
a function of the diffusion exponent, �, for three different lattice
depths. Each point is calculated from 13 distributions taken after
10–40 ms of diffusion and normalized such that their integral is
unity. The inset shows an example of the rescaling transforma-
tion with � ¼ 1:25 in a 4:8Er deep lattice.
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FIG. 2 (color online). A log-log graph of the FWHM squared
as a function of the time squared, for different lattice depths. To
facilitate the comparison of the slopes, all graphs were shifted in
the y direction to cross at a single point. The linear behavior
establishes the power-law time scaling of the width of the atomic
distribution. The FWHM is found by fitting the atomic distribu-
tions to a general function from which we extract the width. In
very shallow lattices (below �1:7Er) we notice an excess
density in the center of the distribution which is probably due
to corrugation in the tube trap potential. To avoid systematic
errors due to this effect, we exclude in this range of lattice depths
the central part of the distribution when fitting and extracting the
FWHM.
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FIG. 3 (color online). The diffusion exponent � as a function
of the lattice depth. The exponent is extracted by three different
methods; The (blue) squares are obtained by fitting the FWHM
scaling to a power-law FWHM� t1=� (the error bar represents a
95% confidence level). The (red) circles are obtained from the
measure of the self-similar transformation. The (black) triangles
are found by fitting the distributions taken after 30 ms with a
Lévy L� function.
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In order to better understand why the shape exponent is
different than the two dynamical exponents, we have writ-
ten both classical and quantum simulations [19]. Based on
their results we attribute the discrepancy between the ex-
ponents to the combination of two factors: �< 1 in the
FDE and correlations between the particle’s velocity and
flight duration. The quantum simulation we have per-
formed is a Monte Carlo wave function (MCWF) of atoms
in a one dimensional polarization lattice with angular
momentum Jg ¼ 1=2 to Je ¼ Jg þ 1 ¼ 3=2 transitions

[20]. The atomic evolution in the light field is treated
quantum mechanically and photon scattering is described
by quantum jumps. In general, we find a good qualitative
agreement between experiments and the simulation despite
differences in the level structure and lattice detuning which
we introduce to simplify the numerics [19]. The temporal
evolution of the simulated spatial distributions, as well as
their shape and dependence on the lattice depth, exhibit the
same properties that were discussed above. In particular,
similarly to Fig. 3, we find that the spatial Lévy exponent is
consistently smaller than the dynamical exponent for deep
lattices. The simulations also establish a clear correlation
between the velocity and flight duration of the atoms. In
other words, if an atom acquires a large momentum, it is
more likely not to be trapped in a single lattice site for
longer times. We have also ran classical Monte Carlo
simulations where the velocities, flight durations, and
dwelling times in the lattice are all drawn from Levy
distributions. Though this simulation shows that a shape
exponent smaller than 1 can be obtained by �< 1 for
shallow lattices, it is necessary to include the correlations
between the velocity and flight duration in order to sustain
this result for increasingly deeper lattices. Both these
factors were indeed found in the MCWF simulations [19].

To summarize, we have presented measurements and
analysis of spatial anomalous diffusion of ultracold atoms

in a 1D polarization lattice. We find that a complete descrip-
tion of this process goes beyond the FDE and must include
the effect of correlations between the motion variables.
Future extensions of our work include the study of anoma-
lous diffusion in the presence of an external force and diffu-
sion in very shallow lattices where there is hope to observe
superballistic diffusion [21]. Also of great interest is to
measure the time evolution of the velocity distributionwhich
is also expected to exhibit anomalous diffusion [22,23].
We thank Rami Pugatch for stimulating discussions.
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FIG. 5 (color online). The atomic distributions after different
diffusion times are fitted with a Lèvy L� function. The resulting
exponent � is plotted as a function of the diffusion time for three
characteristic lattices. In the inset the distributions after 30 ms of
diffusion and their corresponding fits are shown.
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