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We show that a method based on logistic regression, using all the data, solves the inverse Ising problem

far better than mean-field calculations relying only on sample pairwise correlation functions, while still

computationally feasible for hundreds of nodes. The largest improvement in reconstruction occurs for

strong interactions. Using two examples, a diluted Sherrington-Kirkpatrick model and a two-dimensional

lattice, we also show that interaction topologies can be recovered from few samples with good accuracy

and that the use of l1 regularization is beneficial in this process, pushing inference abilities further into

low-temperature regimes.
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Introduction.—When analyzing systems of interacting
elements from data, disentangling direct from indirect
interactions is an intrinsically complex task. Versions of
this problem come about naturally in biology, sociology,
neuroscience, and many other fields, and are bound to
become more and more important as the amount and
diversity of data on large systems continue to grow. In
the Ising model, which has served as a basic starting point
for studying such situations in applications [1–3], a set of
binary variables � ¼ f�1; . . . ; �Ng, �i ¼ �1, has the dis-
tribution

Pð�Þ ¼ 1

Z
exp

�
�
X
i

hi�i þ �
X
i<j

Jij�i�j

�
; (1)

where Z is the partition function, � ¼ 1=T the inverse
temperature, hi are the external fields, and Jij the pairwise

couplings (representing direct interactions). Given magnet-
izations mi ¼ h�ii and pairwise correlations cij ¼
h�i�ji �mimj the probability distribution which maxi-

mizes the entropy has the Ising model form. The standard
inverse Ising problem means to compute (approximately,
efficiently, or according to other criteria) the parameters hi
and Jij from observed mi and cij. The practical interest in

inverse Ising, in the context of the present and future data-
rich world, is to use it as an information extraction tool
superior to measuring correlations. For example, Ising
models can explain the higher order correlations observed
in networks of neurons [4] and, extending the number of
states from two to 21, spectacular success has been
achieved in predicting protein structure by inferring di-
rectly interacting residues (amino acids) [5–7]. In this
Letter, we address the following two questions: (i) can
one do better by keeping all the data for reconstruction
and not only empirical pairwise correlation functions, and

(ii) can such a method be implemented in a computation-
ally efficient manner? The answer is positive on both
accounts, using a method inspired by the regularized lo-
gistic regression of Wainwright, Ravikumar, and Lafferty
[8]. We show, in particular, that keeping all the data greatly
improves reconstruction of an Ising model in the important
parameter region of strong interactions.
Maximum likelihood and computability.—Given B inde-

pendent observations f�ðkÞgBk¼1 all drawn from (1), the log-

likelihood function is

lðfhig; fJijg; f�ðkÞgBk¼1Þ ¼ �
X
i

him
ðBÞ
i þ �

X
i<j

JijðmðBÞ
i mðBÞ

j

þ cðBÞij Þ � logZ; (2)

where mðBÞ
i and cðBÞij are the empirical first and second

moments. In (1), the averages of the functions multiplying
the model parameters are sufficient statistics [9–11], which
in the case at hand means that inference of the biases hi and
the interaction strengths Jij cannot be done better using all

the B samples (NB data points), than by observing justmðBÞ
i

and cðBÞij ( NðNþ1Þ
2 data points). The optimal estimates (in a

maximum likelihood sense) are given by @hi logZ ¼ �mðBÞ
i

and @Jij logZ ¼ �½mðBÞ
i mðBÞ

j þ cðBÞij �. Boltzmann learning

[12] uses Monte Carlo (MC) sampling to compute these
gradients of the partition function with, in principle, un-
bounded accuracy, but is computationally tractable only for
very small systems (although faster versions of this proce-
dure have been introduced, see, e.g., [13] or [14]). Awhole
series of approximations, reviewed in [15], have therefore
been developed by expanding in high temperature (small
interactions), large external fields, or other parameters cf.
(naive) mean field (nMF) [16], Thouless-Anderson-Palmer
inversion [16], small-correlation expansion (SCE) [17] and
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have been further extended using the fluctuation-
dissipation theorem [18–20]. It is well-established that all
these approximate methods are not accurate when the
number of samples is small, nor when the interactions
are strong (temperature is low). However, a recent method
based on expansion of the system into ‘‘clusters’’ (the
contributions of which to the estimates of fh; Jg are in-
cluded or discarded depending on their entropy share)
manages to select correctly the parameters from few
samples in various low-temperature settings [21], question-
ing these limitations. Another promising candidate called
minimum probability flow, recently introduced in [22], has
been shown to very efficiently recover Ising parameters for
a two-dimensional grid. Its performance on more general
systems, in particular, strongly correlated ones, is an inter-
esting and open question.

Pseudolikelihood maximization (without regulariza-
tion).—The conditional probability of one variable �r

given all the others �nr ¼ ð�1; . . . ; �r�1; �rþ1; . . . ; �NÞ is

Pfh;Jgð�rj�nrÞ ¼ 1

1þ e
�2��r½hrþ

P
i�r

Jir�i�
; (3)

where we take Jir to mean Jri when i > r. If �r by itself is
considered a dependent variable, and the complementary
set �nr is taken as independent variables, then the maxi-

mum likelihood estimates of the parameters hr and
Jr ¼ fJirgi�r, given B samples, minimize

frðh0r; J0rÞ ¼ � 1

B

XB
k¼1

lnPfh0;J0gð�ðkÞ
r j�ðkÞ

nr Þ: (4)

Minimizing these functions fr for all r simultaneously,
which we call pseudolikelihood maximization (PLM), is
not the same as maximizing the total log-likelihood (2).

For example, it typically gives different estimates J�;iij and

J�;jij depending on if �i or �j is considered the dependent

variable. We will for definiteness sake always take

J�ij ¼ 1
2 ðJ�;iij þ J�;jij Þ. Alternatively, one could minimize

the sum of all fr while requiring J�;iij ¼ J�;jij . When the

number of samples is large, we can substitute sample
average with ensemble average, and write

frðh0r; J0rÞ � h� ln½Pfh0;J0gð�rj�nrÞ�i

¼ X
�

lnð1þ e
�2��r½h0rþ

P
i�r

J0ir�i�ÞPfh;Jgð�Þ; (5)

with equality expected in the limit. Necessary maximum
likelihood conditions (for one of the conditional probabil-
ities) are then

@fr
@J0sr

ðh0r;J0rÞ¼
X
�

�2��s�r

e
2��r½h0rþ

P
i�r

J0ir�i�þ1

Pfh;Jgð�Þ¼0; (6)

and similarly for the variation with respect to an external
field. At the true parameters these equations hold, since

@fr
@J0sr

ðhr; JrÞ ¼ ��

Zfh; Jg
X
�

�s�r

e

�
P
i�r

hi�iþ�
P
i<j
i;j�r

Jij�i�j

coshð��r½hr þ P
i�r

Jir�i�Þ

¼ 0; (7)

where the expressions vanish because each state for which
�r ¼ 1 has exactly one opposing state for which�r ¼ �1,
contributing equally in size. Assuming this stationary point
is a minimum we can locate, the pseudolikelihood ap-
proach to inferring an Ising model is exact in the limit of
large sample size, and is in this sense qualitatively different
from other approximate inverse Ising schemes.
Pseudolikelihood maximization with

l1-regularization.—Ravikumar, Wainwright, and Lafferty
in [8] introduced a l1-regularized version of the pseudoli-
kelihood approach, i.e., one where the functions to be
minimized are [frðh0r; J0rÞ þ �jjJ0rjj1] with some penalty
parameter � > 0. l1 (absolute value) regularization is
widely used to recover sparse signals [23–25], in situations
where a large fraction of parameters is known to be zero,
but not which parameters. The numerical minimization can
be done efficiently using convex programming, such as the
interior point method of Koh, Kim, and Boyd [26], which
we have used below.
Results for high-quality data.—We minimized (4) using

Newton decent for several values of B in the setting of the
dilute Sherrington-Kirkpatrick (SK) model [27], a com-
monly used test bench for comparing performances of
inverse Ising solvers. Every Jij is thus nonzero with proba-

bility p, and if so drawn from a Gaussian distribution with
zero mean and variance 1=c, c ¼ pN. External fields were
first taken as zero. Reconstruction error was measured by

� ¼ 1
1=

ffiffiffi
N

p hðJ�ij � JijÞ2i1=2. For comparison we also applied

nMF, Thouless-Anderson-Palmer inversion, and two
versions of the small-correlation expansion: the general
result of [17], as well as their higher order zero-
magnetization version. The latter is currently the best
performing approximate method tested on the zero-field
SK model. Figures 1(a) and 1(b) show simulation results
for N ¼ 64 compared to nMF, i.e., JnMF

ij ¼ � 1
� ðc�1Þij. We

also include one curve (for 108 samples) for the best
performing competing method, which indeed turned out
to be the higher order SCE. The curves are the averages of
five different parameter sets, yielding error bars small
enough to be omitted. MC sampling was performed using
a warm-up time of 107 N spin updates and a sampling
frequency of one observation every 10 N updates.
Evidently, PLM outperforms nMF and SCE in the low-
temperature region. As T approaches one from above
(towards the spin glass phase), nMF and SCE start to
perform poorly, while our logistic regression algorithm
appears unaffected. Lowering the temperature further to
T ¼ 0:5, where indeed all approximate methods tested on
this example to date are unusable, PLM continues to
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function. This makes it the first tested method to
reconstruct successfully in this strongly correlated region
of the SK model. As the temperature increases, perform-
ance is limited by the finiteness of B rather than by the
method choice. In this limit [right part of the curves in
Figs. 1(a) and 1(b)] reconstruction error� follows� 1ffiffiffi

B
p for

all methods, but for PLM this seems to hold for all tem-
peratures [parallel curves in Figs. 1(a) and 1(b)]. The
switch to sparse J clearly worsens the performance of
nMF, but does not seem to affect the pseudolikelihood
scheme or SCE much, if at all. The results for system sizes
N ¼ 16 and N ¼ 128 are similar (data not shown).

In applications, external fields typically are not zero, and
there will usually also be some interdependence between
samples. Thus, it is natural to ask whether the good results

for T < 1 are maintained when relaxing these assumptions.
To assess the robustness of PLM against biases, we let all
�hi ¼ h and observed the reconstruction error as h was
increased. Figure 1(c) shows results for a SK model with
N ¼ 10 using 106 samples in the cases T ¼ 5 and T ¼ 0:5.
For both temperatures, a moderate change in the fields has
no effect on performance. For weak interactions (T ¼ 5),
strong magnetizations yield only a modest increase in error
(for the h ¼ 2 case all means are mi � 0:96). When both
couplings and fields are strong, the situation is more deli-
cate. An examination of the data shows that the decrease in
performance for T ¼ 0:5 and h > 1 stems from a few
inference runs having huge errors. For instance, at h ¼
1:5, over 90% of the runs still show errors �< 0:1, but a
few have � as high as 10 or higher. An explicit check of
these instances shows that the cause appears to be freezing
spins (jmij ! 1). When removing the few runs having any
empirical magnetizations jmij> 0:999, we saw the same
modest increase in error as for weak interactions [dashed
curve in Fig. 1(c)]. Interestingly, even for runs where the
error explodes, most parameters are still correctly identi-
fied; i.e., a few parameters diverging does not appear to
destroy the reconstruction throughout the rest of the
system.
In the default setup, we sampled the configurations at

time steps spaced 10NMC steps apart. To assay robustness
against such correlations, we have also used a spacing k N
and lowered k successively in the strongly correlated case
N ¼ 64, T ¼ 0:5, 106 samples from Fig. 1(a) (data not
shown). We then saw practically no effect lowering k
from10 to 1,whilewe did see effects at k � 0:5 and smaller.
The consistency result (7) assumes an Ising model as the

true underlying distribution, a premise which is, at best,
only approximately true for any real data set. An interest-
ing question is therefore: will our method deviate markedly
from an exact maximum-entropy inference, as found by
Boltzmann learning, when the Ising assumption is not true?
The answer seems to be no. To investigate, we imposed an
Ising model on a small system (thus feasible for Boltzmann
learning) which had both second and third order interac-
tions. Figure 1(d) shows that, even when the true system
has no pairwise interactions at all, PLM and Boltzmann
learning estimate very similar ‘‘would be’’ Jij:s. In con-

clusion, the algorithm appears to be tolerant towards ap-
proximate distribution assumptions, high biases, as well as
data interdependency.
Results for low-quality data.—Rebuilding the sign-

sparsity pattern of J from few samples using the PLM
idea has been done numerically for various sparsity types
in [8,28]. We provide here some additional results, specifi-
cally regarding the advantages of using a regularization
term. Taking � > 0 after all makes the optimization prob-
lem considerably harder computationally. A simpler ap-
proach would be to minimize (4) with � ¼ 0 and declare
all couplings for which jJijj< � to be zero (for some
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FIG. 1 (color online). (a) and (b) show reconstruction errors of
PLM, nMF, and SCE versus temperature for (a) fully (p ¼ 1)
and (b) sparsely (p ¼ 0:1) connected SK systems of size
N ¼ 64. The number of MC samples used are 106 (dotted lines),
107 (dashed lines) and 108 (continuous lines). (c) Reconstruction
errors of PLM as functions of external field strength for a SK
system of size N ¼ 10 using 106 samples for two different
temperatures. The dashed curve is obtained for T ¼ 0:5 by
excluding parameter sets where one or more empirical
jmij> 0:999. (d) Comparison of parameter estimates between
Boltzmann learning (JME

ij ) and PLM (JPLMij ) using data generated

from a distribution with Hamiltonian �ð1� �ÞPi<jJij�i�j �
�
P

i<j<kJijk�i�j�k. The system parameters used are N ¼ 10,

B ¼ 106, T ¼ 2, and all interaction parameters are drawn from a
Nð0; 1ffiffiffi

N
p Þ distribution.
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tolerance �). Intuitively, inclusion of a regularization term
should allow for better utilization of sample information
than the simpler tolerance approach. As a test case we
looked at a version of the SK model where the couplings
were not Gaussian but binary, Jij ¼ � 1ffiffiffiffiffi

pN
p (with equal

probability). The inference quality was measured as the
percentage of pairs (i, j) where the interaction strength
was identified correctly as ‘‘þ,’’ ‘‘0,’’ or ‘‘�.’’ PLM using
tolerance only and PLM using regularization (as well as a
tolerance limit) will be referred to as PLM� and PLM�;�

respectively. Figure 2(a) shows that forN ¼ 100, p¼0:05,
and T ¼ 2, PLM�;� fits the edges more accurately and gives

perfect reconstruction for fewer samples than PLM�. Note
that in this example guessing J�ij ¼ 0 for all pairs would

result in a 95% edge agreement on average. Optimal values
of � and f�; �g for each Bwere determined empirically and
used on 20 new parameter sets to yield the averages.

For several sparsity structures the performance of PLM
has been shown to drop as the temperature goes below
some Tcrit even if B is quite large [28]. One such example is
B ¼ 4500 on 7� 7 nearest-neighbor grids with positive
couplings, where each edge in the grid is removed with
probability 0.3 and the remaining couplings are set to one.
The ‘‘failure’’ occurs close to the known critical point for
the Ising model on such grids [28], �crit � 0:7 [29]. We
applied PLM�;� and PLM� to this problem to see whether

combined regularization and tolerance can boost perform-
ance at low temperatures. Figure 2(b) shows the outcome,
where optimal � and f�; �g for each � were again found
empirically and probabilities estimated using 200 new
grids. A breakdown is indeed seen for PLM� around � ¼
0:7, but the effect on PLM�;� is much less pronounced.

Perfect edge recovery, using the latter, is experienced with
high probability far into the low-temperature region. The

complete data output (not reported) shows that including
the tolerance threshold in PLM�;� (as opposed to trusting

the regularization term alone to force suitable estimates of
Jij to zero), becomes necessary at low temperatures. MC

samples in this case were generated using a warm-up time
of 107 N spin updates and a sampling frequency of one
observation every 2000 N updates.
Discussion.—Pseudolikelihood and approximate maxi-

mum entropy should be considered alternative approaches,
where in both cases exact inference (likelihood or maxi-
mum entropy) has been traded in for computability. Our
results suggest that the pseudolikelihood approach allows
for accurate inference in Ising models even for large
strongly coupled systems, a capability which appears to
be maintained even when the amount of data is severely
limited. Tolerating high external fields, dependence among
samples, sparseness as well as strong correlations, in addi-
tion to being robust when distribution assumptions are but
approximate, the method provides a very complete and real
alternative to current approaches that typically fail in one
or several of these respects. Our results also confirm that
including an l1-regularization term is helpful in retrieving
sign sparsity from few samples, allowing for complete
graph reconstruction even in low-temperature regions.
The PLM objective function has one term per sampled

configuration, so running time is heavily dependent on
sample size. For instance, the N ¼ 64 cases with 108

samples took hours on a (one-core) standard home desktop
computer using Newton decent, with almost all of the time
spent evaluating the Hessian of the objective function
(which depends on all 108 samples). We note for future
work that one may alternatively use a quasi-Newton or a
conjugate gradient method, i.e., algorithms that do not use
(exact) Hessians (initial trials suggest that these work also
in the strongly correlated cases). When the number of
samples is small, however, the algorithm naturally runs
fast. Thus, in the region where PLM is likely most interest-
ing (small sample size), it is also computationally efficient
and competitive. Moreover, a practical convenience of
PLM is that the N subproblems can be solved completely
independently, allowing for straightforward parallel
execution.
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