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We consider a minimal model of persistent random searcher with a short range memory. We calculate
exactly for such a searcher the mean first-passage time to a target in a bounded domain and find that it
admits a nontrivial minimum as function of the persistence length. This reveals an optimal search strategy
which differs markedly from the simple ballistic motion obtained in the case of Poisson distributed targets.
Our results show that the distribution of targets plays a crucial role in the random search problem. In
particular, in the biologically relevant cases of either a single target or regular patterns of targets, we find
that, in strong contrast to repeated statements in the literature, persistent random walks with exponential
distribution of excursion lengths can minimize the search time, and in that sense perform better than any

Levy walk.
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The random search problem addresses the question of
determining the time it takes a searcher performing a
random walk to find a target [1]. At the microscopic scale,
search processes naturally occur in the context of chemical
reactions, for which the encounter of reactive molecules is
a required first step. An obvious historical example is the
theory of diffusion-controlled reactions, which has re-
gained interest in the last few years in the context of
genomic transcription in cells [1]. Interestingly, the ran-
dom search problem has also proved in the last decades to
be relevant at the macroscopic scale, as in the case of
animals searching for a mate, food, or shelter [2-9].

In all these examples, the time needed to discover a
target is a limiting quantity, and, consequently, the mini-
mization of this search time often appears as essential. In
this context Levy walks, which are defined as randomly
reoriented ballistic excursions whose length / is drawn
from a power law distribution P(I) ¢, 1/I'"# with
0 < u = 2, have been suggested as potential candidates
of optimal strategies [5]. In fact, Levy walks have been
shown mostly numerically to optimize the search effi-
ciency, but only in the particular case where the targets
are distributed in space according to a Poisson law, and are
in addition assumed to regenerate at the same location after
a finite time. Conversely, in the case of a destructive search
where each target can be found only once the optimal
strategy proposed in [5] is not anymore of the Levy type,
but reduces to a trivial ballistic motion. Given these re-
strictive conditions of optimization, the potential selection
by evolution of Levy trajectories as optimal search strat-
egies is disputable, and in fact the field observation of Levy
trajectories for foraging animals is still elusive and con-
troversial [10-12].

From the theoretical point of view, the search time can
be quantified as the first-passage time of the random
searcher to the target [13]. In the case of a single target
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in a bounded domain, or equivalently of infinitely many
regularly spaced targets, asymptotic results for the mean
first-passage time (MFPT) and the full distribution of the
first-passage time have been obtained for Markovian scale
invariant random walks [14,15]. These results apply, in
particular, directly to Brownian particles that are subject
to thermal fluctuations, and therefore to diffusion-limited
reactions in general. At larger scales, however, most ex-
amples of searchers—even if random—have at least short
range memory skills and show persistent motions, as is the
case for bacteria [16] or larger organisms [2], which cannot
be described as Markovian scale invariant processes. The
study of persistent random walks therefore appears as
crucial to assess the efficiency of many search processes,
and has actually also proved to be important in various
fields such as neutron or light scattering [17-19]. In this
context exact results have been derived that characterize
the diffusion properties of persistent walks in infinite space
[19-21], or mean return times in bounded domains
[17,18,22,23]. The question of determining first-passage
properties of persistent walks has however remained un-
answered so far.

In this Letter, we consider a minimal model of persistent
random searcher—called persistent random walk model
hereafter—with short range memory characterized by an
exponential distribution of the length of its successive
ballistic excursions P(1) ., e~ “//!», where [, is the per-
sistence length of the walk and a a numerical factor. We
calculate exactly for such a persistent random walker the
MFPT to a target in a bounded domain, which corresponds
implicitly to the case of a destructive search since the target
can be discovered only once, and find that it admits a
nontrivial minimum as a function of /,, thus revealing an
optimal search strategy which is very different from the
simple ballistic motion obtained in the case of Poisson
distributed targets. In addition, we show numerically that
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such optimal persistent random walk strategy is more
efficient than any Levy walk of parameter w €]0,2[.
Together, our results show that the distribution of targets
plays a crucial role in the random search problem. In
particular, in the biologically relevant cases of either a
single target or patterns of targets characterized by a
peaked distribution of the target to target distance [2], we
find that, in marked contrast with repeated statements in
the literature, persistent random walks with exponential
distribution of excursion lengths can minimize the search
time, and in that sense perform better than any Levy walk.

The model is defined as follows (see Fig. 1). We con-
sider a persistent random walker in discrete time and space,
moving on a d-dimensional cubic lattice £ of volume
V = X4, where a single target site is located. In practice
we take d = 2 or d = 3, make use of periodic boundary
conditions, and consider the dilute regime X >> 1. This
geometry encompasses both cases of a single target cen-
tered in a confined domain, and of regularly spaced targets
in infinite space with concentration 1/V. The latter situ-
ation can be seen as a limiting case of target distribution
with strong correlations, as opposed to the Poissonian case,
and is biologically meaningful, for example, in the case of
repulsive interactions between targets [2]. The case of a
target of arbitrary position in a domain with reflective
boundary conditions can also be solved exactly using
similar techniques and has been checked to yield analo-
gous results; analytical expressions are, however, much
more complicated in this case and are omitted here for
clarity. Note that here the lattice step size corresponds to
the target size and is set to 1, which defines the unit length
of the problem. At each time step, the random searcher has
a probability p, to continue in the same direction, p, to go
backward, and p; to choose an orthogonal direction, so that
p3; = (1 — p, — p,)/(2d — 2). Following [20], we denote
p; = p3 + € and p, = p; — J, and set in what follows
6 = 0 for the sake of simplicity. The probability of a
ballistic excursion of / consecutive steps with unchanged
direction is then P(I) = (1 — p;)p'~!, and the persistence
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FIG. 1 (color online). Example of search trajectory for a
persistent random searcher in a bounded domain.

length of the walk can be defined as [, = Y°, IP(]) =
1/(1 = p,) where p; =[1+ (2d — 1)€]/(2d), so that
eventually /, = [2d/(2d — 1)]/(1 — €). In what follows
we calculate analytically the search time (T), defined
here as the MFPT to the target averaged over all possible
starting positions and velocities of the searcher, and ana-
lyze its dependence on the persistence length /,, (or equiv-
alently €) and the volume X.

While the position process alone is non Markovian, the
joint process of the position and velocity of the searcher is
Markovian. One can therefore derive an exact backward
equation for the MFPT T(r, e;) to the target of position ry,
for a random searcher starting from r with initial velocity
e;, where B = {e,, ..., e,} defines a basis of the lattice:

T(l', e;)= plT(r +e;,e;)+ PzT(r —e;,—e;)

+ ps Z [T(r+eje;)+T(r—e;,—e)]+1
e, €8 j#i

(M

Note that this equation holds for all sites r # ry. Indeed, by
definition for r = ry the left-hand side of of Eq. (1) yields
T(ry, e;) = 0, while the right-hand side gives the mean
return time to site ry, which is exactly equal to V in virtue
of a theorem due to Kac [24]. We next introduce the
Fourier transform f(q) = 3,c,f(r)e 4" of a function
f(r), where ¢q; =2mn;/X with n; € [0,X — 1]. The
Fourier transform of Eq. (1), completed by the above
discussed result at r = r; then yields

T(g.e;) + Ve 9 = eT(q, ) e + V8(q) + pag(@), (2)

where

s@= 3 [Tlq e)eses + Tlq —ee o] (3)

e,€EB

and 6(q) is the d-dimensional Kronecker function. We thus
obtain

_ VId(q) — e + psglq)
1 — ee'd® '

Summing Eq. (4) times ¢'4% over all e; yields a closed
equation for g(q), which is solved by

¥(q, €)V[é(q) — e '477]

T(q, e;) (4)

_ 5
g(q) 1— psy(q, € ®
where
B COS(q-ej) €
y(q, €) =2 Z 1+ € — 26COS(q-ej)‘ ©

e,€EB

Substituting this expression of g(q) in Eq. (4) then leads to
an explicit expression of T(q, e;). After Fourier inversion
and averaging over all possible starting positions and ve-
locities we finally obtain after some algebra
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T) = 7)
D 1—€ l—ezgl—h(q,e) (
where
e —1)? cos(q.e;)
hq o) = > ! (8)

d 1 + € — 2ecos(q.e))

e,EB
and ;¢ denotes the sum over all possible vectors q
defined above, except q = 0. This exact expression of
the search time for a non Markovian searcher constitutes
the central result of this Letter. We discuss below its
physical  implications, based on two  useful
approximations.
We first consider the case where € < 1, which implies
that the persistence length is of the same order as the target
size (I, = O(1)). In this regime the search time reads

@ = AV -D+—(T)y O

D( )
where (T), is the search time of a nonpersistent random
walk (e = 0) which is known exactly [25]. The quantity
A(e, V) writes A(e, V) =[B,(V) — 1]e + O(e*) where
B,(V) depends on V as follows

d Ze EB[I
By(V) = (;)[d Seenl —cos2mq.e)

cos(2mq.e;)

(10)

In the dilute regime (V — o), B, has a finite limit
(for example B, =~2.72) and Eq. (9) provides a useful
approximate of the search time. In this expression, D(€) =
(1 + €)/(1 — €) is the diffusion coefficient of the persistent
random walk normalized by the diffusion coefficient of
the nonpersistent walk (case € = 0) [20]. Hence, in
Eq. (9), (T),/D is the search time expected for a non-
persistent random searcher of same normalized diffusion
coefficient D. Note that the persistence property yields a
nontrivial additive correction which scales linearly with
the volume, and therefore should not be neglected; this
could be related to the “‘residual’” mean first passage time
described in [26]. As shown in Fig. 2, the approximation of
Eq. (9) is accurate as long as [, is small (that is € < 1).

We next consider the case where the persistence length is
much larger than the target size, that is [, >> 1, or equiv-
alently € — 1. In this regime the search time reads in the
case d = 2:

()= 2(1X_—61) N (X —2 1)?
+(1—e) XD +3)X=2) O[(1—e)?] (11)

12
Figure 2 shows that this expression provides a good
approximation of the exact result of Eq. (7) for [, > 1.
Note that the search time diverges for [, — oo (or € — 1)

because the searcher can then be trapped in extremely long
unsuccessful ballistic excursions.

<T>/<T> 0
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FIG. 2 (color online). Search time for a two-dimensional per-
sistent random walker (T) normalized by the search time for a
nonpersistent walker ((T)O) as a function of the rescaled persis-
tence length, for X = 10 (upper set of curves) and X = 100 (lower
set of curves). The red line stands for the exact result of Eq. (7), the
dotted lines for the approximation € << 1 of Eq. (9), the dashed
lines for the approximation € — 1 of Eq. (11). We used the identity

=[2d/(2d = D]/(1 — e).

Both asymptotics € — 0 and € — 1 clearly show that the
search time can be minimized as a function of € or equiv-
alently /,,, as seen in Fig. 2. The minimum can be obtained
from the analysis of the exact expression (7), and reveals
that the search time is minimized in the case d = 2 for
[, =1, ~x—e 22X with A;=0.14.... Note that the
asymptotic expression (11) yields a good analytical ap-
proximate of this minimum. This defines the optimal strat-
egy for a persistent random searcher, which is realized
when the persistence length has the same order of magni-
tude as the typical system size. In particular, for large
system sizes the optimal persistence length becomes
much larger than the target size. We stress however that
the numerical factor A is nontrivial and notably small. This
optimal strategy can be understood as follows. In the
regime [, < X, the random walk behaves as a regular
diffusion and is therefore recurrent for d = 2. The explo-
ration of space is therefore redundant and yields a search
time that scales in this regime as VInV [27]. On the
contrary for [, > 1 exploration is transient at the scale
of /,, and therefore less redundant. As soon as [, ~ X one
therefore expects the search time to scale as V [27]. Taking
[, too large however becomes unfavorable since the
searcher can be trapped in extremely long unsuccessful
ballistic excursions, so that one indeed expects an optimum
in the regime [, ~ X. This argument suggests the following
scaling of the optimal search time scaled by the nonpersis-
tent case in the case d = 2:

M, o /In(V), (12)
(T

which can indeed be derived from the asymptotic expres-
sion (11) (see also Fig. 3). This shows the efficiency of the
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FIG. 3 (color online). Optimal search time scaled by the non-
persistent case as the function of the domain volume V for
d = 2. The black line stands for the numerical optimization of
Eq. (7), the red line for the analytical optimization of Eq. (11),
and the green dashed line for a fit A/ In(V), where we used the
identity [, = [2d/(2d — 1)]/(1 — €). Inset: The black line
stands for the persistence length at the minimum, /},, obtained
by a numerical optimization of Eq. (7), as a function of X. The
dashed red line is a linear fit of this curve ([, = 0.14X + 3.6).

optimal persistent search strategy in the large volume limit,
as compared to the nonpersistent Brownian strategy. Note
that for d = 3 a similar analysis applies. In particular the
search time is minimized for a value of the persistence
length that again grows linearly with the system size
I}, ~x—00 A3X with however a slightly different numerical
value of the coefficient A; = 0.12.... Additionally, since
for d = 3 one has (T), > V, the scaled optimal search time
then tends to a constant.

Last, we compare the efficiency of the persistent and
Levy walk strategies. More precisely we consider a Levy
walker such that the distribution of the length of its suc-
cessive ballistic excursions follows a symmetric Levy law
of index w and scale parameter c restricted to the positive
axis, defined by the Fourrier transform P(k) = e~ H* 50
that P(l) &, 1/I'"#. For 0 < u < 1, the persistence
length is infinite, yielding in turn an infinite search time.
We therefore focus on the regime 1 < pu =2 and study
numerically the dependence of the search time on both u
and [, (which is set by ¢). Figure 4 shows that the search
time can be minimized as a function of [, forall u €]1, 2],
and that this optimal value decreases when wu is increased.
In particular the search time for the Levy strategy is mini-
mized when u = 2, i-e when the length of the ballistic
excursions has a finite second moment so that the walk is
no longer of Levy type. As seen in Fig. 4 the optimal
persistent random walk strategy therefore yields a search
time shorter than any Levy walk strategy.

This optimal persistent search strategy is in marked
contrast with the simple ballistic motion obtained in the
case of Poisson distributed targets, and shows that the
distribution of targets plays a crucial role in the random

FIG. 4 (color online). Numerical computation of the search
time for a Levy walk on a 2D lattice (X = 50). Plots with circles
stand for the search time for the following values of w (from top
to bottom): u = 1.2, 1.4, 1.6, 1.8, and 2. The black line stands
for a persistent random walk for several values of €. The abscissa
stands for the persistence length [, function of ¢ or €.

search problem. In particular, in the biologically relevant
cases of either a single target or patterns of targets charac-
terized by a peaked distribution of the target to target
distance, we find that, as opposed to repeated statements
in the literature, persistent random walks with an exponen-
tial distribution of excursion lengths can minimize the
search time, and in that sense perform better than any
Levy walk.
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