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I study ‘‘Malthusian flocks’’: moving aggregates of self-propelled entities (e.g., organisms, cytoskeletal

actin, microtubules in mitotic spindles) that reproduce and die. Long-ranged order (i.e., the existence of a

nonzero average velocity h ~vð~r; tÞi � ~0) is possible in these systems, even in spatial dimension d ¼ 2.

Their spatiotemporal scaling structure can be determined exactly in d ¼ 2; furthermore, they lack both the

longitudinal sound waves and the giant number fluctuations found in immortal flocks. Number fluctua-

tions are very persistent, and propagate along the direction of flock motion, but at a different speed.

DOI: 10.1103/PhysRevLett.108.088102 PACS numbers: 87.18.Gh, 05.65.+b, 64.70.qj

Flocking [1]—the coherent motion of large numbers of
organisms—spans a wide range of length scales: from
kilometers (herds of wildebeest) to microns (microorgan-
isms [2,3]; mobile macromolecules in living cells [4,5]). It
is also [6] a dynamical version of ferromagnetic ordering.
A ‘‘hydrodynamic’’ theory of flocking [7] shows that,
unlike equilibrium ferromagnets [8], flocks can spontane-
ously break a continuous symmetry (rotation invariance)
by developing long-ranged order, (i.e., a nonzero average

velocity h ~vð ~r; tÞi � ~0) in spatial dimensions d ¼ 2, even
with only short-ranged interactions.

Many quantitative predictions of the hydrodynamic the-
ory, including the stability of long-ranged order in d ¼ 2,
the existence of propagating, dispersionless sound modes
with nontrivial direction dependence of their speeds, and
the presence of anomalously large number fluctuations,
agree with numerical simulations [7,9], and experiments
on self-propelled molecules [10].

However, a recent reanalysis [11] of this hydrodynamic
theory has cast doubt on the claim that exact scaling ex-
ponents could be determined for flocks in d ¼ 2. This is due
to the erroneous neglect in [7] of nonlinearities arising from
the local number density dependences of various phenome-
nological parameters; these nonlinearities could change the
scaling exponents from those claimed in [7].

In this Letter, I show that these difficulties can be
avoided in flocks without number conservation [12]. A
number of real systems lack number conservation, includ-
ing growing bacteria colonies [13], and ‘‘treadmilling’’
molecular motor propelled biological macromolecules in
a variety of intracellular structures, including the cytoskle-
ton, and mitotic spindles [4,5], in which molecules are
being created and destroyed as they move. Hence, the
study of such systems is not only convenient, but experi-
mentally relevant. The most obvious example of
flocking—namely, actual birds—is clearly not a good ex-
ample of a Malthusian flock. To avoid any confusion on
this point, I will henceforth use the term ‘‘boid’’ [1], rather
than ‘‘bird’’, to refer to the moving, self-propelled entities
that make up the flock.

I will treat systems with the same symmetries as were
considered in earlier work on immortal flocks [7]: orienta-
tionally ordered, translationally disordered phases (i.e.,

phases with h ~vð~r; tÞi � ~0 that are uniform in space and
time) in systems with short-ranged, rotation invariant in-
teractions, moving through (or on, in d ¼ 2) a fixed back-
ground medium that breaks Galilean invariance.
Since my treatment is hydrodynamic, it only describes

large systems at long length and time scales. However, it
becomes asymptotically exact in that limit.
The removal of number conservation leads to profound

changes. The sound modes of number conserving (here-
after ‘‘immortal’’) flocks disappear, and are replaced by
longitudinal velocity fluctuations which drift in the direc-
tion of flock motion with a speed � � v0, where v0 is the
mean speed of the flock. While drifting, these modes also
spread diffusively along the direction of flock motion, and
hyperdiffusively perpendicular to that direction.
In both Malthusian and immortal flocks, anomalous

hydrodynamics stabilizes long-ranged orientational order

(i.e., h ~vð~r; tÞi � ~0) in spatial dimension d ¼ 2. In
Malthusian flocks, the order outlives the boids: the persis-
tence time diverges as the number of boids N ! 1, while
the lifetime of the boids remains finite in this limit.
The scaling exponents of the hydrodynamics can be

determined exactly in spatial dimension d ¼ 2 for
Malthusian flocks, while, as discussed above, those in
immortal flocks cannot. These exponents are the dynamical
exponent z for the scaling of time scales tðL?Þ / Lz

? with

length scale L? perpendicular to the direction of flock
motion, an anisotropy exponent � for the scaling of dis-

tances LkðL?Þ / L�
? parallel to the direction of motion

with L?, and a ‘‘roughness’’ exponent � relating the scale
of velocity fluctuations to L? via �v / L

�
?. I find that, for

Malthusian flocks in spatial dimension d ¼ 2, these expo-
nents are

� ¼ 3
5; z ¼ 6

5; � ¼ �1
5: (1)
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The velocity field can have long-ranged order,

(h ~vð~r; tÞi � ~0) in d ¼ 2, because the roughness exponent
�ðd ¼ 2Þ< 0.

Number fluctuations in Malthusian flocks exhibit
anomalous persistence: the experimentally observable
density-density correlation function

C�ð ~r; tÞ � h��ð ~r0; t0Þ��ð ~r0 þ ~r; t0 þ tÞi; (2)

where ��ð~r; tÞ � �ð~r; tÞ � �0 is the departure of the local
number density of boids �ð ~r; tÞ from its mean value �0,
decays algebraically with time at a fixed point in space:

C�ð~r ¼ ~0; tÞ / jtj�4; (3)

in spatial dimensions d ¼ 2, while for a point translating
along the direction x̂k of flock motion at the ‘‘drift’’ speed

� the decay is even slower: in both 2 and 3 spatial dimen-
sions, I find

C�ð~r ¼ �tx̂k; tÞ / jtj�2: (4)

These should be contrasted with the exponential decay
with time of density fluctuations that occurs in a disordered

Malthusian flock (i.e., one in which h ~vi ¼ ~0).
Since C� and Cv can be constructed from any set of

high-resolution images of a moving flock, as has been done
for flocks of starlings in Ref. [14] and for a related corre-
lation function of bacteria in [13], it should not be difficult
to test these predictions.

I will now outline the derivation of these results.
My starting equation of motion for the velocity is ex-

actly that of an immortal flock [15]:

@t ~vþ �1ð ~v � ~rÞ ~vþ �2ð ~r � ~vÞ ~vþ �3
~rðj ~vj2Þ

¼ � ~v� �j ~vj2 ~v� ~rP1 � ~v½ ~v � ~rP2ð�; j ~vjÞ�
þDo

B
~rð ~r � ~vÞ þDTr2 ~vþD2ð ~v � ~rÞ2 ~vþ ~f; (5)

where all of the parameters �iði ¼ 1 ! 3Þ, �, �, Do
B, DT;2

and the ‘‘pressures’’ P1;2ð�; j ~vjÞ are, in general, functions

of the boid number density � and the magnitude j ~vj of the
local velocity. I will expand P1;2ð�; j ~vjÞ about �0: Pið�Þ ¼
P0
i þ

P1
n¼1 	i;nðj ~vjÞ��n, where i ¼ 1, 2.

In (5), �,Do
B,D2 andDT are all positive, while �< 0 in

the disordered phase and �> 0 in the ordered state.

The� and� terms give ~v a nonzero magnitude v0 ¼
ffiffiffi
�
�

q
in the ordered phase. The diffusion constants DB;T;2 reflect

the tendency of ‘‘boids’’ to follow their neighbors. The ~f
term is a random Gaussian white noise, mimicking errors
made by the boids, with correlations

hfið~r; tÞfjð~r0; t0Þi ¼ ��ij�
dð ~r� ~r0Þ�ðt� t0Þ; (6)

where � ¼ constant, and i, j label vector components.
The ‘‘anisotropic pressure’’ P2ð�; j ~vjÞ in (5) is only al-
lowed due to the nonequilibrium nature of the flock; in an

equilibrium fluid such a term is forbidden by Pascal’s Law.
In earlier work [7] this term was ignored.
Note that (5) is notGalilean invariant; it holds only in the

frame of the fixed medium through or on which the crea-
tures move.
I now need an equation of motion for �. In immortal

flocks, this is just the usual continuity equation of com-
pressible fluid dynamics. For Malthusian flocks, it must
also include the effects of birth and death. As first noted by
Malthus [16], any collection of entities that is reproducing
and dying can only reach a nonzero steady state population
density if the death rate exceeds the birth rate for popula-
tion densities greater than the steady state density, and the
converse for population densities less than the steady state
density [17]. This ‘‘Malthusian’’ condition implies that the
net, local growth rate of number density in the absence of
motion, which I will call gð�Þ—vanishes at some fixed
point density �0, with larger densities decreasing [i.e.,
gð� > �0Þ< 0], and smaller densities increasing [i.e.,
gð� < �0Þ> 0].
The equation of motion for the density is now simply

@t�þr � ð ~v�Þ ¼ gð�Þ: (7)

Note that in the absence of birth and death, gð�Þ ¼ 0, and
Eq. (7) reduces to the usual continuity equation, as it
should, since ‘‘boid number’’ is then conserved.
Since birth and death quickly restore the fixed point

density �0, I will write �ð~r; tÞ ¼ �0 þ ��ð ~r; tÞ and expand
both sides of Eq. (7) to leading order in ��. This gives

�0
~5 � ~v ffi g0ð�0Þ��, where I have dropped the @t� term

relative to the g0ð�0Þ�� term since I am interested in the
hydrodynamic limit, in which the fields evolve extremely
slowly. This equation can be readily solved to give

�� ffi �0
~r � ~v

g0ð�0Þ � ��Dð1Þ
B

	1;1

ð ~r � ~vÞ; (8)

where �Dð1Þ
B is a positive constant, and 	1;1 is the first

expansion coefficient for P1. I can now insert this solution
(8) for �� in terms of ~v into the isotropic pressure P1; the
resulting equation of motion for ~v is

@t ~vþ �1ð ~v � ~rÞ ~vþ �2ð ~r � ~vÞ ~vþ �3
~rðj ~vj2Þ

¼ � ~v� �j ~vj2 ~v� ~vð ~v � ~rP2ð�; j ~vjÞÞ
þDð1Þ

B
~rð ~r � ~vÞ þDTr2 ~vþD2ð ~v � ~rÞ2 ~vþ ~f; (9)

where I have defined Dð1Þ
B � Do

B þ �Dð1Þ
B . Taking the dot

product of both sides of (9) with ~v itself, and defining
Uðj ~vjÞ � �ðj ~vj; �Þ � �ðj ~vj; �Þj ~vj2, I obtain
1
2ð@tj ~vj2 þ ð�1 þ 2�3Þð ~v � ~rÞj ~vj2Þ þ �2ð ~r � ~vÞj ~vj2

¼ Uðj ~vjÞj ~vj2 � j ~vj2 ~v � ~rP2 þDð1Þ
B ~v � ~rð ~r � ~vÞ

þDT ~v � r2 ~vþD2 ~v � ½ð ~v � ~rÞ2 ~v� þ ~v � ~f: (10)

PRL 108, 088102 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

24 FEBRUARY 2012

088102-2



In the ordered state (i.e., the state in which h ~vð ~r; tÞi ¼
v0x̂k), I can expand the ~v equation of motion for small

departures � ~vð~r; tÞ of ~vð ~r; tÞ from uniform motion with
speed v0:

~vð ~r; tÞ ¼ ðv0 þ �vkÞx̂k þ ~v?ð~r; tÞ; (11)

where, henceforth k and ? denote components along and
perpendicular to the mean velocity, respectively.

In this hydrodynamic approach, I am interested only in

fluctuations ~�vð ~r; tÞ � �vkx̂k þ ~v?ð~r; tÞ and ��ð ~r; tÞ that
vary slowly in space and time. Hence, terms involving

spatiotemporal derivatives of ~�vð ~r; tÞ and ��ð ~r; tÞ are al-
ways negligible, in the hydrodynamic limit, compared to
terms involving the same number of powers of fields with
fewer spatiotemporal derivatives. Furthermore, the fluctu-

ations ~�vð~r; tÞ and ��ð ~r; tÞ can themselves be shown to be
small in the long-wavelength limit. Hence, we need only

keep terms in (10) up to linear order in ~�vð~r; tÞ and

��ð ~r; tÞ. The ~v � ~f term can likewise be dropped.
These observations can be used to eliminate many terms

in Eq. (10), and solve for the quantity U � ð�ð�; j ~vjÞ �
�ð�; j ~vjÞj ~vj2Þ; I obtain U ¼ �2

~r � ~vþ ~v � ~rP2. Inserting
this expression forU back into Eq. (9), I find that P2 and �2

cancel out of the ~v equation of motion, leaving, ignoring
irrelevant terms:

@t ~vþ �1ð ~v � ~rÞ ~vþ �3
~rðj ~vj2Þ

¼ DTr2 ~vþDð1Þ
B

~rð ~r � ~vÞ þD2ð ~v � ~rÞ2 ~vþ ~f:

(12)

This can be made into an equation of motion for ~v?
involving only ~v?ð ~r; tÞ itself by projecting perpendicular
to the direction of mean flock motion x̂k, and eliminating

�vk usingU ¼ �2
~r � ~vþ ~v � ~rP2 and the expansionU �

��1�vk � �2��, where I have defined �1 � �ð @U
@j ~vjÞ0� and

�2 � �ð@U@�Þ0j ~vj, with super- or subscripts 0 denoting func-

tions of � and j ~vj evaluated at � ¼ �0 and j ~vj ¼ v0. Doing
this, and using (8) for �, I obtain

@t ~v? þ �@k ~v? þ �1ð ~v? � ~r?Þ ~v?

¼ DTr2
? ~v? þDB

~r?ð ~r? � ~v?Þ þDk@2k ~v? þ ~f?;

(13)

where I have defined � � �1v0, DB � D0
B þ 2v0�3ð�2 �

�2�D
ð1Þ
B =	1;1Þ=�1 and Dk � D0

T þD0
2v

2
0.

Changing co-ordinates to a new Galilean frame ~r0 mov-
ing with respect to our original frame in the direction of
mean flock motion at speed �—i.e., ~r0 � ~r� �tx̂k—gives

@t ~v? þ �1ð ~v? � ~r?Þ ~v? ¼ DTr2
? ~v? þDB

~r?ð ~r? � ~v?Þ
þDk@02k ~v? þ ~f?: (14)

Ignoring the nonlinear term �1 in this equation of motion
gives a noisy, anisotropic, vectorial diffusion equation.
This can be readily solved for the mode structure and
fluctuations by spatiotemporal Fourier transformation,
and has d� 1 diffusing modes in spatial dimension d.
These separate into d� 2 ‘‘transverse’’ modes (i.e., modes
with ~v? perpendicular to ~q?), all with the same imaginary
eigenfrequency: �i!T ¼ DTj ~q?j2 þDkq2k. The remain-

ing diffusive mode (the only mode in d ¼ 2) is ‘‘longitu-
dinal’’ (i.e., has ~v? along ~q?), with frequency
�i!L ¼ D?j ~q?j2 þDkq2k, where D? � DB þDT .

Because the dynamics described above is in the
Galileanly boosted frame, the dynamics in the original
reference frame ~r will have a steady drift at velocity �
superposed on the diffusive motion described above; that
is, both eigenfrequencies get �qk added to them.

I can also calculate the real-space velocity fluctuations
hj ~v?ð~r; tÞj2i in this linearized approximation; I find that, in
this approximation, this diverges in all d � 2. This is
analogous to the Mermin-Wagner theorem [8] in equilib-
rium magnets. However, as in immortal flocks [7], this
‘‘Mermin-Wagner’’ result, and all the linearized scaling
laws, are invalidated for d � 4 by the �1 term in (14).
To show this here, I will analyze Eq. (14) using the

dynamical renormalization group (RG) [18].
The dynamical RG starts by averaging the equations of

motion over the short-wavelength fluctuations, i.e., those
with support in the ‘‘shell’’ of Fourier space b�1� � j ~qj �
�, where � is an ‘‘ultraviolet cutoff’’, and b is an arbitrary
rescaling factor. Then, one rescales lengths, time, and ~v?
in Eq. (14) according to ~v? ¼ b� ~v0

?, ~r? ¼ b~r0?, rk ¼
b�r0k, and t ¼ bzt0 to restore the ultraviolet cutoff to �.

This leads to a new equation of motion of the same form
as (14), but with ‘‘renormalized’’ values (denoted by
primes below) of the parameters given by

D0
B;T ¼ bz�2ðDB;T þ graphsÞ; (15)

D0
k ¼ bz�2� ðDk þ graphsÞ; (16)

�0 ¼ bz���2�þ1�dð�þ graphsÞ; (17)

�0
1 ¼ bzþ��1ð�1 þ graphsÞ; (18)

where ‘‘graphs’’ denotes contributions from integrating
out the short-wavelength degrees of freedom. If we
ignore these graphical corrections (valid for �1 small),
and choose z, � , and � to keep the linear parameters
DB;T;k and � fixed, Eq. (18) implies that an initially

small �1 will grow for all d � 4, meaning the linearized
theory.
It is possible to get exact exponents in d ¼ 2. This is

because the nonlinearity—the �1 term—in (14) is a total

derivative in d ¼ 2 (specifically, �1

2 @?v
2
?), since the ?

subspace is one dimensional in d ¼ 2. In contrast, in
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immortal flocks, v-� nonlinearities arising from the �
dependence of �1 cannot be written as total derivatives,
making it impossible to obtain exact exponents, a fact
missed by [7]. Here, because the �1 term is a total ?
derivative, it can only graphically renormalize terms in-
volving ? derivatives themselves. Hence, the graphical
corrections to Dk and � in Eqs. (16) and (17) vanish.

Therefore, at a fixed point, in d ¼ 2,

z� 2� ¼ 0; z� �� 2�þ 1�d¼ z� �� 2�� 1¼ 0:

(19)

There are no graphical corrections �1 either, because the
equation of motion (14) remains unchanged by the trans-
formation: ~r? ! ~r? � �1 ~v1t, ~v? ! ~v? þ ~v1 for arbitrary
constant vector ~v1 ? x̂k. This exact symmetry must con-

tinue to hold upon renormalization, with the same value
of �1. Hence, �1 cannot be graphically renormalized.
Requiring that �0

1 ¼ �1 in (18), and setting graphs ¼ 0,
implies � ¼ 1� z in all d � 4. This and (19) forms three
independent equations for the three unknowns �, z, and � ,
whose solution in d ¼ 2 is (1).

The scaling exponents z, � , and � determine the scaling
form of the velocity-velocity autocorrelation function in
arbitrary dimension d through the scaling relation [7]:

Cvð~r; tÞ � h ~v?ð~0; 0Þ � ~v?ð~r; tÞi ¼ j~r?j2�G
� r0k
j~r?j�

;
t

j~r?jz
�

¼ j~r?j2�G
�
rk � �t

j~r?j�
;

t

j~r?jz
�
; (20)

where the second equality follows from scaling arguments
applied to the boosted equation of motion (14), and the
third arises from undoing the boost. Here Gðu;wÞ is a

scaling function, with scaling arguments u � rk��t

j~r?j� and

w � t
j~r?jz . The asymptotic limits of Gðu;wÞ and Cvð ~r; tÞ

can be obtained by the following arguments.
When rk � �t ! 0 and t ! 0, Cvð~r; tÞ must

clearly depend only on r?, and should not vanish. Hence
Gðu � 1; w � 1Þ ! constant � 0. This in turn implies

that Cvð~r; tÞ / j~r?j2� for j~r?j� 	 jrk � �tj, t�=z.
Similarly, if ~r ! 0 and t ! 0, then Cvð~r; tÞ should

depend only on jrk � �tj. This implies Gðu; wÞ / u2�=�

for u	w, 1, in order to cancel off the j~r?j2� prefactor in

Eq. (20). This in turn implies that Cvð~r; tÞ / jrk � �tj2�=�
for jrk � �tj 	 j~r?j� , t�=z. Similar reasoning implies that

Cvð~r; tÞ / jtj2�=z for t 	 j~r?jz, jrk � �tjz=� . Hence, using
the exact exponents (1) in d ¼ 2,

Cvð~r; tÞ /

8>>><
>>>:

r�ð2=5Þ
? ; jr?j3=5 	 jrk � �tj; t1=2
ðrk � �tÞ�ð2=3Þ; jrk � �tj 	 jxj3=5; t1=2
t�ð1=3Þ; jtj 	 jr?j6=5; jrk � �tj2:

(21)

This correlation function can be measured directly in both
simulations [7,9], and experiments [14].
The relation (8) between density and velocity implies

that density correlations should obey the same sort of
scaling law, but with an additional power of jr?j�1 for
every power of ��; hence, in d ¼ 2:

C�ð ~r; tÞ � jr?j�ð12=5ÞG�

�
rk � �t

jr?j3=5
;

t

jr?j6=5
�

/

8>>><
>>>:

jr?j�ð12=5Þ; jr?j3=5 	 jrk � �tj; t1=2
ðrk � �tÞ�4; jrk � �tj 	 jr?j3=5; t1=2
t�2; jtj 	 jr?j6=5; jrk � �tj2:

(22)

The last line holds in d ¼ 3 as well, because � ¼ 1� z
does. The last two lines of (22) directly imply Eqs. (3) and
(4). It can also be shown [11] that at equal timesC�ð ~r; t ¼ 0Þ
decays sufficiently rapidly that there are no giant number
fluctuations in Malthusian flocks.
In conclusion, I have shown in this Letter that, as always

in hydrodynamics, the removal of a conservation law (in
the case I consider here, number conservation), leads to
profound changes in the long-wavelength, long-time be-
havior of flocks. The sound modes of number conserving
flocks disappear, and are replaced by drifting, hyperdiffu-
sive modes. I have also shown that earlier claims that
hydrodynamic scaling laws could be obtained for number
conserving flocks are incorrect, but that it is possible to
do so for number nonconserving, (Malthusian) flocks. In
both Malthusian and immortal flocks, anomalous hydro-
dynamics stabilizes long-ranged orientational order (i.e.,

h ~vð~r; tÞi � ~0) in spatial dimension d ¼ 2. In Malthusian
flocks, the order outlives the boids: the persistence time
diverges as the number of boids N ! 1, while the lifetime
of the boids remains finite in this limit. The theory pre-
sented here implies a number of experimentally observable
consequences, including the anomalous persistence of
number fluctuations in Malthusian flocks, which decay
algebraically with time with universal power laws which
are predicted herein.
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