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We introduce a well-defined and unbiased measure of the strength of correlations in quantum many-

particle systems which is based on the relative von Neumann entropy computed from the density operator

of correlated and uncorrelated states. The usefulness of this general concept is demonstrated by

quantifying correlations of interacting electrons in the Hubbard model and in a series of transition-metal

oxides using dynamical mean-field theory.
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Correlations in solids are the origin of many surprising
phenomena such as Mott-insulating behavior and high-
temperature superconductivity [1–3]. During the last few
years the investigation of correlations between ultracold
atoms in optical lattices has opened another fascinating
field of research [4].

In many-body physics, correlations are conventionally
defined as the effects which go beyond factorization ap-
proximations such as Hartree-Fock theory [5]. The actual
strength of correlations in a given system is usually quan-
tified by an interaction strengthU relative to an energy unit
such as the bandwidth W, or by comparing expectation
values of particular operators, e.g., the interaction or the
total energy [6–10]. However, there are many other quan-
tities which can in principle be used to measure the corre-
lation strength. Indeed ‘‘correlations’’ are by definition a
relative concept since they always require the comparison
with some reference system. Any approach which employs
the expectation value of a particular set of operators for
comparison will be biased. This raises a fundamental
question: is there an objective way to quantify the correla-
tions of a system, which even allows one to compare the
correlation strength of different systems?

Maximal information about a general quantum state
is provided by the corresponding density operator
(‘‘statistical operator’’) �̂ ¼ P

ipijc iihc ij, where pi is
the probability for the quantum state jc ii to be present in
the mixture [11]. If there exists a basis in which �̂ can
be completely factorized (�̂ ! �̂PS, where PS refers to
‘‘product state’’), the corresponding state is by definition
uncorrelated [12]. To quantify the correlation strength of a
quantum state one has to compare �̂ with �̂PS in a suitable
way.

In this Letter we propose to quantify correlations within
a statistical approach which is based on the concept of the
von Neumann entropy [11,13]. We will show that the
relative entropy [14] of a quantum state with respect to

an uncorrelated product state provides a well-defined, un-
biased, and useful measure of the correlation strength in
that system. This concept not only allows one to quantify
correlations, but even to compare the correlation strength
of different quantum states. In quantum theory the
von Neumann entropy is defined as Sð�̂Þ ¼ �hln�̂i�̂ ¼
�Trð�̂ ln�̂Þ. It quantifies the degree to which a quantum
system is in a mixed state. In this way one can also define a
relative entropy [14]

�Sð�̂k�̂Þ � �ðhln�̂i�̂ � hln�̂i�̂Þ; (1)

provided the support [15] of �̂ is contained in the support
of �̂; otherwise �Sð�̂k�̂Þ is infinite. By definition the
relative entropy defined in this way is positive, monotonic,
additive, and convex in its arguments [16]. The relative
entropy measures ‘‘how different’’ two quantum states are
[14,16–19]. Therefore we propose to quantify correlations
by the relative entropy �Sð�̂k�̂PSÞ between the statistical
operator �̂ of a system and an uncorrelated product state
with �̂PS for the same system [16,20]. Since this approach
uses a statistical operator it accounts for correlations rep-
resented by all possible correlation functions generated by
�̂. In the following wewill make use of a reduced statistical
operator which restricts the set of assessable correlation
functions.
The general approach works as follows [22–26]. Let j�i

be any state in the Hilbert space of the system. We decom-
pose the system into two subsystems yielding two Hilbert
subspaces A ¼ fjaig and B ¼ fjbig, where jai and jbi are
basis vectors of these subspaces. Then one may write
j�i ¼ P

ab�a;bjaijbi with amplitudes �a;b. We trace

out the degrees of freedom of the B subsystem. The re-
duced statistical operator is given by �̂�

A ¼ TrBj�ih�j ¼P
a1;a2

ja1i��
a1;a2ha2j, with the matrix elements ��

a1;a2 ¼P
b�a1;b�

�
a2;b

. By defining diagonal operators, i.e.,

projectors, P̂a ¼ jaihaj, and off-diagonal operators
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T̂a1a2 ¼ ja1iha2j, respectively, one can determine

��
a1;a2 ¼ h�jT̂a1;a2 j�iy explicitly.

In the following, we will demonstrate the usefulness of
this general concept by applying it to interacting lattice
electrons described by the Hubbard model, i.e., a generic
many-electron model with purely local interaction. In its
simplest version it has the form

Ĥ ¼ X

ij

tijĉ
y
i�ĉj� þU

X

i

n̂i"n̂i#; (2)

where ĉyi� (ĉi�) are creation (annihilation) operators for
fermions of spin� ¼" ð#Þ at the lattice site i, tij are hopping
amplitudes between different sites, and U is the local
interaction energy. The Hubbard model cannot be solved
exactly. As an approximation we therefore employ dy-
namical mean-field theory (DMFT), which becomes exact
in the limit of infinite spatial dimensions (d ! 1) [27] and
is known to provide a reliable local, but fully dynamical,
description of correlated electron systems in d ¼ 3
[28,29]. By using DMFT to compute the relative
von Neumann entropy only the most important, namely,
local, correlations of the exact solution are taken into
account. In DMFT the subspace A is chosen to correspond
to a site iwith the four state vectors jai ¼ fj0i; j "i; j #i; j2ig
which characterize the local occupation of the site. By
computing the statistical operator within DMFT we deter-

mine the eigenvalues pa ¼ h�jP̂aj�i of the reduced sta-
tistical operator �̂A. We then employ an explicit product
state jPSi to calculate the uncorrelated reduced statistical
operator �̂PS

A and its eigenvalues pPS
a . In this way the

relative entropy (1) of the two states can be determined.
In the following, the subspace index A � i will be omitted.
In the absence of off-diagonal long-range order
(h�jĉ�j�i ¼ 0, h�jĉ�ĉ��j�i ¼ 0) the reduced, i.e.,
local, statistical operator is diagonal [16,22–26]: �̂ ¼
p0j0ih0j þ

P
�p�j�ih�j þ p2j2ih2j. The diagonal matrix

elements pa are expressed by the particle number density
n, magnetization densitym, and double occupation per site
d, i.e., p0 ¼ 1� nþ d, p� ¼ ðnþ �mÞ=2þ d, and
p2 ¼ d. Because of its diagonal form the local
von Neumann entropy is given by Sð�̂Þ ¼ �P

apa logpa

with a ¼ 0, " , # , 2. Then the local relative entropy
becomes

�Sð�̂k�̂PSÞ ¼ �X

a

paðlnpa � lnpPS
a Þ; (3)

where pPS
a is the corresponding expectation value within

the factorization approximation corresponding to jPSi. We
note that the reversed relative entropy �Sð�̂PSk�̂Þ is also
defined. The statistical operator is no longer diagonal if, for
example, the local interaction includes nondensity type
terms, or if superconducting phases are considered. In
this case the statistical operator needs to be diagonalized
to determine its logarithm.

To compute the parameters n, m, and d the DMFT self-
consistency equations are solved numerically by using the
numerical renormalization group method at zero tempera-
ture [30]. We assume hopping tij � t between nearest

neighbor sites i, j on a cubic lattice and use the corre-
sponding density of states for the DMFT calculations. The
bandwidth W ¼ 6t ¼ 1 sets the energy unit. We fix the
particle number density at n ¼ 1. In the following both
paramagnetic and antiferromagnetic ground states are
considered.
(i) Paramagnetic ground state.—We analyze the corre-

lated paramagnetic (PM) ground state jPMiwith respect to
the following two reference states: (i) the product state in
k space jPSi � jfreei corresponding to noninteracting
(U ¼ 0) electrons, where d ¼ ðn2 �m2Þ=4, and (ii) the
product state in position space, i.e., the local moment state
jPSi � jLMi where d ¼ 0. In the PM phase m ¼ 0 imply-
ing that Sð�̂Þ ¼ �2½d lndþ ð12 þ dÞ lnð12 þ dÞ� is deter-

mined solely by the dependence of the double occupation
d on U. In the upper panel of Fig. 1 the local entropy is
shown as a function of U, and d is shown in the inset. Both
are monotonically decreasing functions of U: the local
entropy decreases from ln4 at U ¼ 0 to ln2 at U ¼ 1
and the double occupation from 1=4 to 0. At half-filling a
Mott-Hubbard metal insulator transition (MIT) takes place
at a critical interaction Uc � 1:225, at which a correlation
gap opens in the one-particle spectral function. At the MIT
the double occupation, and therefore the local entropy,
displays a kink. The free state jfreei and the local moment
state jLMi have constant local entropies Sfree ¼ ln4 and
SLM ¼ ln2, respectively, which reflect the degeneracy of
those uncorrelated product states.

PM
AFM
AFM-HF

FIG. 1 (color online). Upper panel: Local von Neumann en-
tropy of the correlated PM ground state as a function of the
interaction U. Inset: double occupation in the PM (black curve)
and the AFM (red curve) ground state compared to the Hartree-
Fock result (green curve) as a function of U. Lower panel: local
relative entropies (PM phase) between the correlated ground
state and the noninteracting (U ¼ 0) and local moment
(U ¼ 1) ground states, respectively, as functions of U.
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The correlated PM state jPMi can be distinguished from
the product states jfreei and jLMi, respectively, bymeans of
four different relative entropies: �Sð�̂k�̂freeÞ, �Sð�̂k�̂LMÞ,
�Sð�̂freek�̂Þ, and�Sð�̂LMk�̂Þ, which are obtained from the
three statistical operators �̂, �̂free, and �̂LM using Eq. (3).
The relative entropies are functions of U as is shown in the
lower panel of Fig. 1. The larger their value, the more
distinguishable the two corresponding states are. In the
Mott phase the relative entropy �Sð�̂k�̂freeÞ increases
much more slowly with the interaction strength U than in
the metallic phase. This means that in a Mott insulator the
correlation strength increases more slowly withU than in a
correlated metal.We note that�Sð�̂k�̂LMÞ ¼ 1 forU <1
because in the local moment state double occupation is
completely excluded (pLM

2 ¼ 0), i.e., jPMi and jLMi can
be perfectly distinguished by measuring the respective
double occupation of the two states. By contrast, the reverse
relative entropy�Sð�̂LMk�̂Þ remains finite although the two
states are perfectly distinguishable. This shows that
�Sð�̂k�̂LMÞ rather than the reverse expression is the more
appropriate measure of the correlations.

(ii) Antiferromagnetic case.—Next we compare the cor-
related antiferromagnetic (AFM) ground state jAFi with
the product states represented by the Slater state jSlati (a
spin-density product state in k space) and the Heisenberg
state jHeisi (a perfect Neél-type product state in position
space), respectively. The staggered magnetization mst of
the Slater state is determined within Hartree-Fock, whence
dSlat ¼ ½ðnSlatÞ2 � ðmst;SlatÞ2�=4. In the Heisenberg state

mst;Heis ¼ 1 and dHeis ¼ 0. As shown in the upper panel

in Fig. 2 the local entropies Sð�̂Þ and Sð�̂SlatÞ are almost
identical. A similar agreement is found when the local
entropies are plotted as functions of the order parameter
mst instead of the interaction U. Both local entropies
decrease from ln4 at U ¼ 0 to zero at U ¼ 1. This is

due to the presence of long-range order with a magnetiza-
tion that fully saturates. It means that at U ¼ 1 the spin
degeneracy is completely lifted. We observe that Sð�̂Þ>
Sð�̂SlatÞ because m<mSlat and d < dSlat due to quantum
fluctuations, cf. inset of Fig. 1. The Slater (weak coupling)
and the Heisenberg (strong coupling) limits are smoothly
connected [31].
The correlated AFM state jAFi can be distinguished

from the product states jSlati and jHeisi, respectively, by
the four relative entropies �Sð�̂k�̂SlatÞ, �Sð�̂k�̂HeisÞ,
�Sð�̂Slatk�̂Þ, and �Sð�̂Heisk�̂Þ which are obtained from
the three statistical operators �̂, �̂Slat, and �̂Heis. The rela-
tive entropies �Sð�̂k�̂SlatÞ and �Sð�̂Slatk�̂Þ are more than
an order of magnitude smaller than in the PM case, as is
seen in the inset to the upper panel of Fig. 2. As before the
relative entropy �Sð�̂k�̂HeisÞ ¼ 1 because dHeis ¼ 0, im-
plying pHeis

2 ¼ 0 for any U. By contrast, �Sð�̂Heisk�̂Þ is
finite and approaches zero at large U. Correlationwise the
Heisenberg product state and the correlated AFM state are
therefore very similar at large U, and cannot be easily
distinguished. This means that, in contrast to the PM state,
the AFM correlated state is locally only weakly correlated.
In a further application, we employ the relative entropy

to quantify correlations in real materials. As an example,
we select a series of transition-metal (TM) monoxides
MnO, FeO, CoO, and NiO. The results are obtained within
the LDAþ DMFT approach [32–34], which combines the
local density approximation (LDA) to density functional
theory with the DMFT [16]. We take the states obtained
from the LDA jLDAi as the uncorrelated states. In Fig. 3
we show the local entropies of the series of TMmonoxides.
The local entropies computed by LDAþ DMFT describe
the corresponding ionic ground states, which correspond
in all four cases to high-spin configurations. The orbital

FIG. 2 (color online). Upper panel: local von Neumann en-
tropy S of the correlated AFM and the Slater ground states as a
function of U. Lower panel: local relative entropies �S between
correlated AFM, Slater, and Heisenberg ground states.
�Sð�̂k�̂SlatÞ and �Sð�̂Slatk�̂Þ are magnified by a factor of 50.
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FIG. 3 (color online). Left panels: local von Neumann (top)
and relative (bottom) entropies for MnO, FeO, CoO, and NiO
series. Right panels: local von Neumann (top) and relative
(bottom) entropies for hole doped NiO; see text.
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degrees of freedom imply that NiO and MnO have a four-
fold degeneracy, while FeO and CoO have a sixfold degen-
eracy [35]. The trend in the LDA entropy reflects the
decreasing number of possibilities to distribute 5 (MnO),
6 (FeO), 7 (CoO), and 8 (NiO) electrons among 10 orbitals,
which are modified by the crystal-field splitting and deviate
from integer occupation. The dominant effect of the corre-
lations is to reduce the large number of local many-body
ground states available in the jLDAi solution to only a few
in the jDMFTi solution. We conclude that MnO, with a d5

configuration, is more correlated than NiO which has a d8

configuration, because in a d5 configuration the interaction
modifies the local occupation matrix more significantly.

Finally, we investigate the effect of hole doping on NiO
[34]. Reducing the 3d occupation towards half-filling in-
creases the number of local states with non-negligible
contribution to the ground state and leads to an increase
of the local entropy with hole doping in the uncorrelated
system. In the correlated system the local density matrix
changes substantially. While in stoichiometric NiO the d8

(t62ge
2
g) states dominate the local density matrix, hole dop-

ing leads to a progressive population of d7 and d9 (t62ge
1;3
g ),

respectively. The increase of the number of states which
effectively contribute to the ground state is reflected in the
increase of the local entropy. This leads to a lowering of the
relative entropy with the number of holes and to a sub-
stantial decrease of correlations.

In conclusion, we employed the relative von Neumann
entropy between correlated and factorized (uncorrelated)
statistical operators to quantify the correlation strength in
quantum many-body systems. We demonstrated the use-
fulness of this approach by computing the degree of corre-
lation in the Hubbard model and in a series of transition
monoxides using DMFT and LDAþ DMFT, respectively.
It will be interesting to apply this general concept to
investigate correlations beyond a single-site approxima-
tion, in which case not only dynamical local, but also
spatial correlations are included.
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[6] R. Grobe, K. Rza̧żewski, and J. H. Eberly, J. Phys. B 27,
L503 (1994).
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