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We study Andreev bound states (ABS) and the resulting charge transport of a Rashba superconductor

(RSC) where two-dimensional semiconductor (2DSM) heterostructures are sandwiched by spin-singlet

s-wave superconductor and ferromagnet insulator. ABS becomes a chiral Majorana edge mode in the

topological phase (TP). We clarify two types of quantum criticality about the topological change of ABS

near a quantum critical point (QCP), whether or not ABS exists at QCP. In the former type, ABS has an

energy gap and does not cross at zero energy in the nontopological phase. These complex properties can

be detected by tunneling conductance between normal metal-RSC junctions.
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Topological quantum phenomena and relevant quantum
criticality have been an important concept in condensed
matter physics [1,2]. Recently, stimulated by the issue of a
Majorana fermion in condensed matter physics [3–6], the
topological quantum behavior of superconductivity has
become a hot topic [7–12]. One of the most crucial points
is the property of the nontrivial edge modes in the topologi-
cal phase where edge modes are protected by the bulk
energy gap.

The edge state of a superconductor has been known from
the study of the Andreev bound state (ABS) in unconven-
tional superconductors [13–15]. In high TC cuprates, dis-
persionless zero energy ABS ubiquitously appears [14,15]
due to the sign change of the pair potential on the Fermi
surface. The zero energy state manifests itself as a zero-
bias conductance peak in tunneling spectroscopy [15,16].
Subsequently, the presence of ABS with linear dispersion
has been clarified in a chiral p-wave superconductor [17]
realized in Sr2RuO4, where time-reversal symmetry is
broken [18]. On the other hand, in the presence of
spin-orbit (SO) coupling with time reversal symmetry, it
has been revealed that spin-singlet s-wave pairing and the
spin-triplet p-wave one can mix with each other due to the
broken inversion symmetry [19–21]. ABS appears as a
helical edge mode for �p > �s, where we denote the

s-wave and p-wave pair potentials as �s and �p, respec-

tively, with �s > 0 and �p > 0 [21,22].

The critical behavior of ABS has been discussed in spin-
triplet chiral p-wave pairing [3]. By changing the chemical
potential � of spin-triplet chiral p-wave superconductor
from positive to negative, ABS as a chiral Majorana mode
disappears. The corresponding quantum critical point is
� ¼ 0. Although, such a quantum phase transition can be
possible in a � ¼ 5=2 fractional quantum Hall system [3]
and cold atom [23,24], it is significantly difficult to obtain
a superconducting state for negative � in electronic
superconductors.

In all of the above works, ABS is generated from un-
conventional pairing with nonzero angular momentum. On
the other hand, in the presence of strong SO coupling with
broken time reversal symmetry, chiral Majorana modes can
be generated from spin-singlet s-wave pairing [25,26]. Fu
and Kane have revealed the presence of the chiral
Majorana mode at the boundary between a ferromagnet
and superconductor generated on the surface of a topologi-
cal insulator (TI). After that, manipulating the Majorana
mode in a TI [26] and in semiconductor heterostructures
based on a conventional spin-singlet s-wave superconduc-
tor has been proposed in several contexts [27–29].
Sau et al. has proposed a unique Rashba superconductor
where two-dimensional electron gas (2DEG) is sand-
wiched by a conventional spin-singlet s-wave supercon-
ductor and a ferromagnetic insulator [28]. These systems
are really promising for future applications of quantum
qubits since the host superconductor is robust against
impurity scattering.
Although there have been several theoretical studies

about the present RSC [30–32], the feature of the
Andreev bound state (ABS) and its relevance to the topo-
logical quantum phase transition has not been revealed at
all. It is known that ABS emerges as a chiral Majorana
edge mode in TP; however, the evolution of ABS in the
nontopological phase (NTP) and its connection to quantum
phase transition have not been clarified yet. To reveal these
problems is indispensable to understand the tunneling
spectroscopy of the normal metal–RSC junction system
and future applications of the quantum device.
In this Letter, we study energy dispersions of ABS in

RSC composed of 2DEG sandwiched by a spin-singlet
s-wave superconductor and ferromagnetic insulator. It is
clarified that there are two types of quantum criticality for
ABS, i.e., quantum phase transition with or without ABS
corresponding to type I and type II, respectively. In type I,
ABS can exist even at the critical point where the bulk
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energy gap closes, and in the NTP. Nonzero ABS generated
in the NTP does not cross at zero energy. These features are
completely different from those in type II where edge
states become absent both at the critical point and in the
NTP. The conventional criticality of spinless spin-triplet
chiral p-wave superconductors belongs to type II [3,24].
The conductance between normal metal/RSC junction
shows wide variety of line shapes reflecting on these novel
quantum criticalities. We also show the drastic jump of the
conductance at critical point.

A Hamiltonian of Rashba superconductor with magne-
tization is given by the following form [27–29] :

HðkÞ ¼ H0ðkÞ þHRðkÞ þHZ þHS; (1)

where kinetic energy H0, Rashba spin-orbit interaction
(RSOI) HR, Zeeman interaction HZ by exchange field
from FM insulator, and spin-singlet s-wave pair potential
HS induced by proximity effect are H0ðkÞ ¼ �ks0�z,
HRðkÞ¼�ðsx�0ky�sy�zkxÞ, HZ ¼ Vzsz�z, HS¼��sy�y,

where s and � are Pauli matrices, s0 and �0 are 2� 2 unit
matrices, describing electron spin and particle—hole
degrees of freedom, respectively. We take the explicit
form of kinetic energy as �k ¼ k2=2m�� with � being
chemical potential, for simplicity. The exchange energy in
a 2DEG can be tuned by changing the material of ferro-
magnetic insulator, or tuning the barrier thickness between
the ferromagnetic insulator and the 2DEG. In the normal
states (� ¼ 0), there are two types of the energy bands as
shown in Fig. 1. For Zeeman interaction dominant case
with m�2 < jVzj, there are two parabolic dispersions
[Fig. 1(a)]. On the other hand, for RSOI dominant case
with m�2 > jVzj, the shape of the energy band is wine-
bottle-like [Fig. 1(b)]. As we shall see later, the difference
between these two types of energy bands in normal state
becomes important.

The eigenvalues of the Hamiltonian for the infinite
system are given by Eaðkx; kyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k þ �k

p
, Ebðkx; kyÞ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k þ �k

p
, Ecðkx; kyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k � �k

p
, and Edðkx; kyÞ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k � �k

p
with

�k ¼ �2
k þ �2k2 þ V2

z þ �2;

�k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2k2 þ V2

z Þ�2
k þ V2

z�
2

q
; (2)

where k is defined by k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
with real kx and ky for

the plane wave. The corresponding eigenvectors u�ðkx; kyÞ
with � ¼ a, b, c, and d are also obtained analytically.
Let us now consider a semi-infinite RSC in x > 0 with

flat surface at x ¼ 0. The wave function in the present
system is given by

c ky;Eðx > 0Þ ¼ X4
i¼1

tiuiðqi; kyÞeiqixeikyy: (3)

When qi is a real number, the corresponding wave function
expresses propagating wave, i.e., scattering state. On the
other hand, when qi is a complex number, it describes an
evanescent wave. Energy E and y—component of momen-
tum ky are good quantum numbers. To obtain qi, we solve k

for fixed E ¼ Eaðkx; kyÞ and E ¼ Ecðkx; kyÞ for E> 0

[E ¼ Ebðkx; kyÞ and E ¼ Edðkx; kyÞ for E< 0]. qi is

given by qi ¼ kx by postulating the constraints
@E�ðqi; kyÞ=@qi > 0 for scattering state, and Imqi > 0 for

evanescent state. Note here that, in general, k and qi
become complex numbers which can be obtained by ana-
lytical continuation. The coefficient ti is determined by the
confinement condition as c ky;Eð0Þ ¼ 0.

Tunneling conductance of normal metal N/RSC junction
as shown in Fig. 2 is calculated based on the standard way
[15,33]. Suppose that the normal metal has no spin-orbit
interaction, i.e., the Hamiltonian reads HMðkÞ ¼
ðk2=2m��MÞs0�z, where �M ¼ �� 	0 with 	0 being
the energy of bottom of the energy band, which is negative,
and the interface potential is given by HI ¼ Hs0�0
ðxÞ.
The wave function in N is given by

c ky;E;sðx < 0Þ ¼
�
�see

ikexx þX
s0�0

rss0�0�s0�0e
�i�0k�0xx

�
eikyy;

(4)

where the first term denotes an incident electron with
spin s, and �s� is the eigenvector of spin s for electron

FIG. 1 (color online). Energy spectra of the normal (� ¼ 0)
states. (a) Zeeman (Rashba spin orbit) interaction is dominant
with m�2 < jVzj. (b) Rashba spin-orbit interaction is dominant
with m�2 > jVzj. The critical value of chemical potential for the
transition between topological and nontopological super-

conductors is given by ��c ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
z � �2

q
. [See discussion

below Eq. (6)].

FM insulator

2DEG + Rashba

s-wave
superconductor

Metal

x

y

z

FIG. 2 (color online). Normal metal/Rashba superconductor
(RSC) junction. Andreev bound state as edge state can exist
denoted by the (red) arrow.
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(� ¼ þ1) or hole (� ¼ �1), and kex ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mð�M þ EÞ � k2y

q
and khx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mð�M � EÞ � k2y

q
are

momenta of reflected electron and hole, respectively. On
the other hand, the wave function in RSC (x > 0) obeys the
same form as in Eq. (3). The boundary condition at the
interface located on x ¼ 0 is given by the following two
expressions [34]. c ð�0Þ ¼ c ðþ0Þ, vðþ0Þc ðþ0Þ �
vð�0Þc ð�0Þ ¼ �i2H�zc ð0Þ, where velocity in x direc-
tion is vðxÞ ¼ @H=@kxjkx!�i@x . Solving the above equa-

tions, we obtain reflection (transmission) coefficient rðtÞ.
Charge conductance G normalized by its value GN in the
normal state (� ¼ 0) with Vz ¼ 0, �=m�2 ¼ 4,
�M=m�2 ¼ 2� 104, and Z2 ¼ mH2=�M ¼ 104, which
corresponds to the case of Figs. 3(h) and 3(k) with
� ¼ 0, at zero-bias voltage (eV ¼ 0) is given by

G=GN ¼ X
s

Z kF

�kF

dkyTsðky; EÞ=
X
s

Z kF

�kF

dkyTsðky; 0Þ; (5)

with Tsðky; EÞ ¼ 2�P
s0�0�

0jrss0�0 j2 and �M ¼ 2mk2F.

Hereafter, the parameters are fixed as Z2 ¼ 10, �M=� ¼
104, and all the conductances G are normalized by the
same value of GN .

We discuss the energy spectra and the tunneling con-
ductances, focusing on the difference of the criticality
between two RSCs with different chemical potential with
�> 0 (Fig. 3) and �< 0 (Fig. 4) for jVzj>m�2.

In TP [Figs. 3(a) and 4(a)], ABS appears as a chiral

Majorana edge mode, where jVzj>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
is satisfied.

Because of the presence of this mode, the corresponding
tunneling conductance has a zero-bias peak as shown in
Figs. 3(d) and 4(d). For �> 0, near the QCP [Fig. 3(b)],
although ABS appears as a chiral Majorana mode, the
corresponding G has a zero-bias dip as shown in Fig. 3(e)
due to the presence of a parabolic dispersion of bulk energy
spectra near ky ¼ 0. At QCP [Fig. 3(c)], it is noted that ABS

remains although the bulk energy gap closes at ky ¼ 0. This

feature is quite different from �< 0, where ABS is absent
at QCP [Fig. 4(b)]. The resulting G has a V-shaped zero
energy dip both for two cases shown in Figs. 3(f) and 4(e).
For �> 0, ABS still remains even in the NTP as shown in
Figs. 3(g)–3(i). ABS has an energy gap and is absent around
ky ¼ 0. The tunneling conductance shows a gap structure

around eV ¼ 0 [Fig. 3(j)].With the increase of�, i.e., away
from QCP, the additional nonzero ABS around ky ¼ 0

[Figs. 3(h) and 3(i)] with the almost flat dispersion are
generated. As a result,G has two peaks at the corresponding
voltages inside the bulk energy gap [Figs. 3(k) and 3(l)]. On
the other hand, for�< 0, ABS is absent inNTP as shown in
Fig. 4(c). The resulting G is almost zero inside the bulk
energy gap [Fig. 4(f)]. Based on these results, we can
classify two types of criticality whether edge state exists
at QCP or not.We denote former type as type I and the latter
one as type II in the following.

We have also studied for jVzj � m�2. The energy
spectra at QCP with positive � [Fig. 5(a)] and negative
� [Fig. 5(b)] are shown. In this case, irrespective of the
value of �, ABS exists at QCP. Therefore, the resulting
criticality is always type I.
Type I and II transitions can be distinguished experi-

mentally by the line shape of G. In type I transition, line
shape of G becomes almost symmetric with respect to
eV ¼ 0 as shown in Figs. 3(f), 5(c), and 5(d) as compared
to that in type II as shown in Fig. 4(f). Furthermore, G at
type I transition takes 1 order of magnitude larger value
than that at type II, due to contribution from the edge states.
It is noted that the small value of Z2 does not qualita-

tively change the results of the Letter. In the low trans-
parency limit, the contribution from edge states becomes
dominant for the conductance G, then the resulting line
shape of G becomes insensitive to the parameters of the

FIG. 3 (color online). Energy spectra and tunneling conduc-
tances as a function of bias voltage (eV=�) of the Rashba
superconductor. The horizontal axis denotes the normalized
momentum � ¼ ky=

ffiffiffiffiffiffiffiffi
m�

p
. Zeeman interaction and Rashba

spin—orbit interaction are fixed as Vz=� ¼ 2, m�2=� ¼ 0:5.
The chemical potential is set as follows. (a),(d) �=� ¼ 0, (b),
(e) �=� ¼ 1:7, (c),(f) �=� ¼ ffiffiffi

3
p

, (g),( j) �=� ¼ 1:8, (h),
(k) �=� ¼ 2, (i),(l) �=� ¼ 2:5.
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normal metal, i.e., Z2, �M, and m. In the present case, the
transmission probability in the normal state (� ¼ 0) be-
comes sufficiently small with GN=G0 � 104, where G0

denotes the maximum value of GN , even for Z2 ¼ 0 since
the magnitudes of Fermi momenta in left normal metal
(x < 0) and right RSC (x > 0) are much different with
�M=�> 103.

Here, we mention the criticality of ABS in spinless
chiral p-wave superconductor. Hamiltonian of spinless
chiral p-wave superconductor is given by

HpðkÞ ¼ k2=2m�� �pk�
�pkþ �k2=2mþ�

 !
: (6)

It is known that QCP is located at� ¼ 0. ABS appears as a
chiral Majorana mode in TP (�> 0) while it is absent in
NTP �< 0, respectively [3]. ABS disappears at QCP. In
the light of our classification, quantum criticality of spine-
less chiral p-wave superconductor belongs to the type II.

To understand the difference of two types of criticality,
we focus on the energy dispersions in the normal state
shown in Fig. 1. Here we introduce the critical value of

transition between TP and NTP ��c ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
z � �2

q
. The

ABS is generated from �kF to þkF, where the magnitude
of kF is almost the same with that of the large Fermi
surface. First, we focus on the case with m�2 < jVzj. The
type I quantum phase transition occurs at � ¼ �c, shown
in Fig. 3. In this case, the large Fermi surface survives as
shown in Fig. 1(a). On the other hand, as shown in Fig. 4,
type II quantum phase transition occurs at � ¼ ��c. In
contrast to the type I, the large Fermi surface vanishes in
the NTP as shown in Fig. 1(a). For m�2 > jVzj, the quan-
tum criticality always belongs to type I. Actually, as shown
in Fig. 1(b), the large Fermi surface survives both at
� ¼ �c and � ¼ ��c. For type I, the number of Fermi

surfaces is 2 in NTP and 1 in TP. On the other hand, for
type II, the number of Fermi surface is 0 in NTP and 1 in
TP. Above rich behavior of quantum criticality in RSC
originates from the simultaneous existence of the Rashba
spin-orbit coupling and the Zeeman interaction.
Finally, we show the zero-bias tunneling conductance of

RSC as a function of � and Vz in Fig. 6. The quantum
phase transition from NTP to TP occurs with tuning the
parameter Vz or �. In accordance with this transition, the
conductance increases by about 3 orders of magnitude, due
to the contribution from zero energy ABS at ky ¼ 0.

In this Letter, we have calculated the energy spectrum
and the tunneling conductance of RSC and clarified its
quantum criticality. Quantum phase transition between
topological and nontopological superconductors has two
types of criticality whether ABS survives or not at QCP. It
is remarkable that ABS can remain at QCP in RSC dis-
tinctly from spinless chiral p-wave superconductor which
is a prototype of topological superconductor. This stems
from the structures of Fermi surfaces which are spin split

FIG. 4 (color online). Energy spectra (upper) and tunneling
conductances (lower) of the Rashba superconductor for negative
chemical potentials. (a),(d) �=� ¼ �1, (b),(e) �=� ¼ � ffiffiffi

3
p

,
(c),(f) �=� ¼ �2. The other parameters are the same as in
Fig. 3

FIG. 5 (color online). Energy spectra and tunneling conduc-
tances of the Rashba superconductor for m�2 > jVzj at quantum
critical point. (a),(c) �=� ¼ ffiffiffiffiffiffiffiffiffi

1:25
p

, (b),(d) �=� ¼ � ffiffiffiffiffiffiffiffiffi
1:25

p
.

The other parameters are taken as follows. m�2=� ¼ 5,
Vz=� ¼ 1:5.

FIG. 6 (color online). Conductance as a function of chemical
potential �=� and Zeeman interaction Vz=�. Rashba spin-orbit
interaction is taken as m�2=� ¼ 0:5. The transition of type I (II)
occurs at positive (negative) �. The solid (broken) line indicates
the critical line of type I (II) transition.
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by Rashba spin-orbit interaction in the normal state. This
results can provide a new perspective of quantum critical-
ity for topological superconductors. We have considered
only the spin-singlet s-wave superconductor. It is interest-
ing to study in the case of unconventional superconductor
where much richer quantum criticality can be expected
[35–37].

This work is supported by Grant-in-Aid for Scientific
Research (Grants No. 17071007, No. 17071005,
No. 19048008, No. 19048015, No. 22103005,
No. 22340096, and No. 21244053) from the Ministry of
Education, Culture, Sports, Science and Technology of
Japan, Strategic International Cooperative Program (Joint
Research Type) from Japan Science and Technology
Agency, and Funding Program for World-Leading
Innovative RD on Science and Technology (FIRST
Program).

[1] X. G. Wen, Quantum Field Theory of Many-Body Systems
(Oxford University Press, Oxford, 2004).

[2] G. R. Volovik, The Universe in a Helium Droplet (Oxford
University Press, Oxford, 2003)

[3] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[4] C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008).
[5] S. Das Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73,

220502(R) (2006).
[6] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[7] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[8] X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Phys.

Rev. Lett. 102, 187001 (2009).
[9] R. Roy, arXiv:0803.2868;
[10] M. Sato, Phys. Rev. B 79, 214526 (2009); 81, 220504(R)

(2010).
[11] Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. 81,

011013 (2012).
[12] J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, and N.

Nagaosa, Phys. Rev. Lett. 104, 067001 (2010).
[13] L. J. Buchholtz and G. Zwicknagl, Phys. Rev. B 23, 5788

(1981); J. Hara and K. Nagai, Prog. Theor. Phys. 76, 1237
(1986).

[14] C. R. Hu, Phys. Rev. Lett. 72, 1526 (1994).
[15] S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys. 63, 1641

(2000).
[16] Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451

(1995).
[17] M. Matsumoto and M. Sigrist, J. Phys. Soc. Jpn. 68, 994

(1999); C. Honerkamp and M. Sigrist, J. Low Temp. Phys.
111, 895 (1998); M. Yamashiro, Y. Tanaka, and S.
Kashiwaya, Phys. Rev. B 56, 7847 (1997); A. Furusaki,
M. Matsumoto, and M. Sigrist, Phys. Rev. B 64, 054514
(2001); M. Stone and R. Roy, Phys. Rev. B 69, 184511
(2004).

[18] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657
(2003).

[19] T. Yokoyama, Y. Tanaka, and J. Inoue, Phys. Rev. B 72,
220504(R) (2005); C. Iniotakis, N. Hayashi, Y. Sawa, T.
Yokoyama, U. May, Y. Tanaka, and M. Sigrist, Phys. Rev.
B 76, 012501 (2007).

[20] A. B. Vorontsov, I. Vekhter, and M. Eschrig, Phys. Rev.
Lett. 101, 127003 (2008).

[21] Y. Tanaka, T. Yokoyama, A.V. Balatsky, and N. Nagaosa,
Phys. Rev. B 79, 060505(R) (2009); M. Sato and S.
Fujimoto, Phys. Rev. B 79, 094504 (2009).

[22] C. K. Lu and S. Yip, Phys. Rev. B 80, 024504 (2009).
[23] S. Tewari, S. Das Sarma, C. Nayak, C. Zhang, and P.

Zoller, Phys. Rev. Lett. 98, 010506 (2007).
[24] T. Mizushima, M. Ichioka, and K. Machida, Phys. Rev.

Lett. 101, 150409 (2008).
[25] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[26] L. Fu and C. L. Kane, Phys. Rev. Lett. 102, 216403 (2009);

A. R. Akhmerov, J. Nilsson, and C.W. J. Beenakker, Phys.
Rev. Lett. 102, 216404 (2009); Y. Tanaka, T. Yokoyama,
and N. Nagaosa, Phys. Rev. Lett. 103, 107002 (2009).

[27] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett.
103, 020401 (2009); M. Sato, Y. Takahashi, and S.
Fujimoto, Phys. Rev. B 82, 134521 (2010).

[28] J. D. Sau, R.M. Lutchyn, S. Tewari, and S. Das Sarma,
Phys. Rev. Lett. 104, 040502 (2010).

[29] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[30] R.M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.

Lett. 105, 077001 (2010); Y. Oreg, G. Refael, and F. von
Oppen, Phys. Rev. Lett. 105, 177002 (2010); T. Stanescu,
R.M. Lutchyn, and S. Das Sarma, Phys. Rev. B 84,
144522 (2011); J. D. Sau, S. Tewari, R.M. Lutchyn,
T.D. Stanescu, and S. Das Sarma, Phys. Rev. B 82,
214509 (2010); R.M. Lutchyn, T. D. Stanescu, and S.
Das Sarma, Phys. Rev. Lett. 106, 127001 (2011).

[31] K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103,
237001 (2009); A. C. Potter and P.A. Lee, Phys. Rev. B
83, 094525 (2011).

[32] J. Linder and A. Sudbø, Phys. Rev. B 82, 085314 (2010);
C. Bena, D. Sticlet, and P. Simon, arXiv:1109.5697; C.
Qu, Y. Zhang, L. Mao, and C. Zhang, arXiv:1109.4108; M.
Gibertini, F. Taddei, M. Polini, and R. Fazio,
arXiv:1111.4656.

[33] G. E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys.
Rev. B 25, 4515 (1982).

[34] T. Yokoyama, Y. Tanaka, and J. Inoue, Phys. Rev. B 74,
035318 (2006).

[35] Y. Tanaka et al., Phys. Rev. Lett. 105, 097002 (2010); K.
Yada, M. Sato, Y. Tanaka, and T. Yokoyama, Phys. Rev. B
83, 064505 (2011).

[36] M. Sato and S. Fujimoto, Phys. Rev. Lett. 105, 217001
(2010).

[37] A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504
(2011); P.M.R. Brydon, A. P. Schnyder, and C. Timm,
Phys. Rev. B 84, 020501 (2011); A. P. Schnyder, P.M. R.
Brydon, D. Manske, and C. Timm, Phys. Rev. B 82,
184508 (2010).

PRL 108, 087003 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

24 FEBRUARY 2012

087003-5

http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevB.73.220502
http://dx.doi.org/10.1103/PhysRevB.73.220502
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://arXiv.org/abs/0803.2868
http://dx.doi.org/10.1103/PhysRevB.79.214526
http://dx.doi.org/10.1103/PhysRevB.81.220504
http://dx.doi.org/10.1103/PhysRevB.81.220504
http://dx.doi.org/10.1143/JPSJ.81.011013
http://dx.doi.org/10.1143/JPSJ.81.011013
http://dx.doi.org/10.1103/PhysRevLett.104.067001
http://dx.doi.org/10.1103/PhysRevB.23.5788
http://dx.doi.org/10.1103/PhysRevB.23.5788
http://dx.doi.org/10.1143/PTP.76.1237
http://dx.doi.org/10.1143/PTP.76.1237
http://dx.doi.org/10.1103/PhysRevLett.72.1526
http://dx.doi.org/10.1088/0034-4885/63/10/202
http://dx.doi.org/10.1088/0034-4885/63/10/202
http://dx.doi.org/10.1103/PhysRevLett.74.3451
http://dx.doi.org/10.1103/PhysRevLett.74.3451
http://dx.doi.org/10.1143/JPSJ.68.994
http://dx.doi.org/10.1143/JPSJ.68.994
http://dx.doi.org/10.1023/A:1022281409397
http://dx.doi.org/10.1023/A:1022281409397
http://dx.doi.org/10.1103/PhysRevB.56.7847
http://dx.doi.org/10.1103/PhysRevB.64.054514
http://dx.doi.org/10.1103/PhysRevB.64.054514
http://dx.doi.org/10.1103/PhysRevB.69.184511
http://dx.doi.org/10.1103/PhysRevB.69.184511
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/PhysRevB.72.220504
http://dx.doi.org/10.1103/PhysRevB.72.220504
http://dx.doi.org/10.1103/PhysRevB.76.012501
http://dx.doi.org/10.1103/PhysRevB.76.012501
http://dx.doi.org/10.1103/PhysRevLett.101.127003
http://dx.doi.org/10.1103/PhysRevLett.101.127003
http://dx.doi.org/10.1103/PhysRevB.79.060505
http://dx.doi.org/10.1103/PhysRevB.79.094504
http://dx.doi.org/10.1103/PhysRevB.80.024504
http://dx.doi.org/10.1103/PhysRevLett.98.010506
http://dx.doi.org/10.1103/PhysRevLett.101.150409
http://dx.doi.org/10.1103/PhysRevLett.101.150409
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.102.216403
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevB.82.134521
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevB.84.144522
http://dx.doi.org/10.1103/PhysRevB.84.144522
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevLett.106.127001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevB.83.094525
http://dx.doi.org/10.1103/PhysRevB.83.094525
http://dx.doi.org/10.1103/PhysRevB.82.085314
http://arXiv.org/abs/1109.5697
http://arXiv.org/abs/1109.4108
http://arXiv.org/abs/1111.4656
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/PhysRevB.74.035318
http://dx.doi.org/10.1103/PhysRevB.74.035318
http://dx.doi.org/10.1103/PhysRevLett.105.097002
http://dx.doi.org/10.1103/PhysRevB.83.064505
http://dx.doi.org/10.1103/PhysRevB.83.064505
http://dx.doi.org/10.1103/PhysRevLett.105.217001
http://dx.doi.org/10.1103/PhysRevLett.105.217001
http://dx.doi.org/10.1103/PhysRevB.84.060504
http://dx.doi.org/10.1103/PhysRevB.84.060504
http://dx.doi.org/10.1103/PhysRevB.84.020501
http://dx.doi.org/10.1103/PhysRevB.82.184508
http://dx.doi.org/10.1103/PhysRevB.82.184508

