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We investigate the scaling of coherence time T2 with the number of � pulses n� in a singlet-triplet spin

qubit using Carr-Purcell-Meiboom-Gill (CPMG) and concatenated dynamical decoupling (CDD)

pulse sequences. For an even numbers of CPMG pulses, we find a power law T2 / ðn�Þ�e , with �e ¼
0:72� 0:01, essentially independent of the envelope function used to extract T2. From this surprisingly

robust value, a power-law model of the noise spectrum of the environment, Sð!Þ �!��, yields � ¼
�e=ð1� �eÞ ¼ 2:6� 0:1. Model values for T2 n�ð Þ using � ¼ 2:6 for CPMG with both even and odd n�
up to 32 and CDD orders 3 through 6 compare very well with the experiment.
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Avariety of solid state systems are emerging as effective
platforms for studying decoherence and entanglement in
controlled quantum systems [1–4]. Among them, quantum-
dot-based spin qubits have recently achieved sufficient
control and long coherence times [1,2] that new informa-
tion about the noise environment of the qubit can be
extracted, complementing related work in nitrogen-
vacancy centers in diamond [4], superconducting qubits
[3], trapped ions [5], and neutral atoms [6].

Dynamical decoupling in the form of a sequence of �
pulses [7–10] functions as a high-pass filter, thus providing
information about the spectral content of environmental
noise [3–5,11–16]. For spin qubits, the effectiveness of
various decoupling schemes at mitigating dephasing due
to nuclear bath dynamics has been well-studied theoreti-
cally [17–21]. Much less is known about mitigating the
effects of charge noise, which couples to the qubit via gate-
dependent exchange interaction and through spatially vary-
ing Overhauser fields [1]. When the decoherence time T2 is
short compared to the energy relaxation time T1—which is
the case in this study—both the envelope of the coherence
decay as well as the dependence of T2 on the number of �
pulses, n�, depend on the spectral density of the environ-
ment, S !ð Þ. Knowledge of S !ð Þ inferred from such mea-
surements can in turn be used to design optimal decoupling
sequences [5,12,22–24].

In this Letter, we investigate the scaling of T2 with the
number of � pulses for Carr-Purcell-Meiboom-Gill
(CPMG) and concatenated dynamical decoupling (CDD)
sequences in a GaAs two-electron singlet-triple qubit
[Fig. 1(a)]. The coherence envelope is reasonably well-
described by the form exp½�ð�D=T2Þ��, where �D is the
time during which � pulses are applied [Fig. 2(b)]. It is
difficult, however, to accurately determine � by directly
fitting to this form. In contrast, we find that the scaling
relation T2 � ðn�Þ� very accurately describes the data,
irrespective of the value of � used to extract T2. The

resulting � can then be related to � and other quantities
of interest within specific noise models. For CPMG with
even n�, the scaling relation T2 / ðn�Þ�e yields �e ¼
0:72� 0:01, using T2 values extracted using any � in the
range of 2 to 5. A model of dephasing due to a power-law
spectrum of classical noise, Sð!Þ �!��, leads to a scaling
relation in the number of� pulses, with the exponent of the
power law � related to the scaling exponent by the simple
relation � ¼ �e= 1� �eð Þ. For the present experiment,
�e ¼ 0:72 thus yields � ¼ 2:6. Further support for a
power-law form for S !ð Þ is found by comparing experi-
mental and theoretical dependences T2 n�ð Þ for CPMGwith
both even and odd n� as well as CDD pulse sequences.
This model also gives the simple relation � ¼ �þ 1,
connecting the noise spectrum and the decoherence enve-
lope exponent. The resulting value, � ¼ 3:6� 0:1, is thus
determined with considerably greater accuracy than can be
obtained from direct fits to the coherence envelope data.
The lateral double quantum dot investigated was defined

by Ti=Au depletion gates patterned using electron beam
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FIG. 1 (color online). (a) Micrograph of a lithographically
identical device with dot locations depicted. The gate voltages
VRðLÞ set the charge occupancy of the right (left) dot as well as

the detuning of the qubit. An rf-sensor quantum dot is indicated
on the right. (b) Double-dot charge state mapped onto dc con-
ductance change, �g, with lettered pulse sequence gate voltages.
The detuning axis is orthogonal to the (0,2)–(1,1) charge degen-
eracy through points E, S, and M.
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lithography on a GaAs=Al0:3Ga0:7As heterostructure with
a two-dimensional electron gas (density 2� 1015 m�2,
mobility 20 m2=Vs) 100 nm below the surface.
Measurements were performed in a dilution refrigerator
with an electron temperature Te � 150 mK. The double
quantum dot is operated as a spin qubit by first depleting
the quantum dots to the last two electrons and then ma-
nipulating the charge occupancy of the two dots with high-
bandwidth plunger gates VL and VR along a detuning axis �
[Fig. 1(b)]. In this work, the charge occupancy was ma-
nipulated between states (0,2) and (1,1), where NL and NR

represent the charge in the left and right dots. Charge
occupancy was determined by the conductance change
�g through a proximal sensor quantum dot, which in
turn modulated the reflection coefficient of the radio-
frequency (rf) readout circuit [25,26].

The logical spin qubit subspace is spanned by the singlet

[S ¼ ðj "#i � j #"iÞ= ffiffiffi
2

p
] and the m ¼ 0 triplet [T0¼ðj "#iþ

j #"iÞ= ffiffiffi
2

p
] states of two electrons. The m ¼ �1 triplet

states were split off by a 750 mT magnetic field applied
in the plane of the electron gas, perpendicular to the dot
connection axis. A (0,2) singlet was prepared at point P,
off the detuning axis, through rapid relaxation to the
ground state, then moved to the separation point S in
(1,1). Uncorrelated Overhauser fields in the two dots
create an evolving Zeeman gradient �Bz that drives
transitions between S and T0. A single-shot readout was
performed by moving to point M, where S can tunnel to
(0,2) while T0 remains in (1,1). The reflectometer signal
was integrated for 600 ns per shot, averaged over 104 shots,
and compared to voltage values corresponding to S and T0

outcomes [27], yielding PS �Dð Þ, the probability of singlet
return.

Coherence lost due to the (thermally driven) evolution of
�Bz can be partially restored using a Hahn echo by pulsing
at time �D=2 to point E, where the exchange splitting
between S and T0 drives a � rotation about the x̂ axis,
changing the sign of the acquired phase. Returning to S for
an equal time �D=2 cancels the phase acquired due to the
low-frequency (!< 2=�D) end of the spectrum of fluctua-
tions of �Bz [11,12]. Dynamical decoupling using a series
of � pulses allows efficient removal of more of the low-
frequency end of the noise spectrum [11,12]. The CPMG
sequence [28], for example, uses evenly spaced gate pulses
from point S to point E with a half interval before the first
and after the last � pulse [Figs. 2(b) and 2(c)]. CDD
[2,9,29] uses nonuniformly spaced pulses to point E, where
the kth-order sequence is determined recursively from the
lower-order one, with an additional� pulse in the center of
odd orders (the first order of CDD corresponds here to the
Hahn echo) [Fig. 2(d)].
Singlet return probabilities PS �Dð Þ were measured for

CPMG sequences with n� ¼ 1, 2, 3, 4, 8, 16, and 32. Fits to
PS ¼ 0:5þ V=2 exp½�ð�D=T2Þ��, with visibility V and T2

as fit parameters, were equally good for fixed values of �
between 2 and 4, as seen in Fig. 3(a). For this reason,
although S !ð Þ is related to �, these fits give little informa-
tion about the spectrum of the environment. Figure 3(b),
showing the fitted value of T2 as a function of the fixed �
and n� for an even number of CPMG pulses, shows two
remarkable features. First, values of T2 do not depend on
the value of� used in the fits to PS �Dð Þ. Second, T2 shows a
power-law scaling T2 ¼ T0

2ðn�Þ� whose power, �, also
does not depend on the value of � used in the fits.
To model these observations, we consider the Gaussian

noise affecting the energy splitting of the qubit, which
leads to the off-diagonal (in the basis of j "#i and j #"i)
elements of the qubit density matrix decaying as
exp½��ð�DÞ�, where

�ð�DÞ ¼
Z 1

0

d!

�
Sð!ÞFð!�DÞ

!2
; (1)

with F !�Dð Þ being the filter function determined by the
sequence of � pulses driving the qubit. For the CPMG
sequence, FðzÞ< ðz=2n�Þ4 for z < 2n�, i.e., F zð Þ strongly
suppresses the low-frequency noise, while, for large z and
n�, the filter function can be approximated [12] by a
periodic train (with period zp ¼ 2�n�) of square peaks

of height h � 2n2� and width �z � z2p=�h � zp.

We find that the value of �e and the presence of an even-
odd effect (EOE) in n� (i.e., �e � �o) act as discriminators
for several classes of S !ð Þ. (i) The case of 0< �e � 2=3
and absent EOE is compatible with a model of Sð!Þ �
!�� (over a range of ! roughly bounded by the minimal
and maximal values of n�=�D), with 0<� � 2. In this
case, �e ¼ �= 1þ �ð Þ and � ¼ �þ 1. This can be de-
rived by realizing that the contribution to � �Dð Þ for CPMG
is dominated by a narrow peak of height 2n2� at !�D �
�n� in the F !�Dð Þ filter [3,12,15,16]. One example is the
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FIG. 2 (color online). (a) Energy level diagram along the
detuning axis �. The (0,2) singlet was prepared at �P, followed
by separation to �S. � pulses are performed at �E, allowing for
subsequent rephasing at �S. There is a single-shot readout at �M
using a proximal sensor dot. The exchange energy JE that
drives the � pulses at �E is indicated with a dashed line.
(b)–(d) Schematics of detunings during CPMG and CDD pulse
sequences with detuning points on the vertical axis.

PRL 108, 086802 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

24 FEBRUARY 2012

086802-2



case of Ornstein-Uhlenbeck noise [30] [having Lorentzian
S !ð Þ, with the !�2 tail typically dominating the decoher-
ence under dynamical decoupling], where � ¼ 2=3 was
confirmed by experiments on the NV center [4]. (ii) When
an EOE is present, �e ¼ 2=3 suggests a hard cutoff in S !ð Þ
at !c < 2=T2, in which case �o ¼ 1. (iii) For !c > 2=T2,
i.e., for larger !c or larger n� (leading to longer T2), the
EOE disappears and � tends to 1 [14]. (iv) Finally, the
presence of the EOE and 2=3<�e < 1 indicates Sð!Þ �
!��, with �> 2.

Experimentally, we find �e ¼ 0:72 for an even number
of CPMG pulses, and n� ¼ 1 not along the scaling line,
indicating an EOE. We conclude that scenario (iv) applies,
namely, Sð!Þ ¼ A�þ1=!� with 2<�< 3. Using Eq. (1)
and the CPMG filter function gives, in the large-n� limit,

�ðtÞ � ðA�DÞ1þ�

�
a

n��
þ be=o

n4�

�
; (2)

with a � �2þ�=�
2ð2�Þ�, where �� ¼ P1

k¼1ðk� 1
2Þ��,

and, for odd (even) n�, we have bo � ½32�ð3� �Þ��1

fbe � ½128�ð5� �Þ��1 � bo=10g; i.e., the b=n4� term is
negligible for even n�, while it gives a significant correc-
tion for small, odd n�. The EOE comes from the difference
in the low-z behavior of the CPMG filter functions, which,
for z < 1, behave as FðzÞ � z4=25n4�ðz6=27n4�Þ for odd
(even) n�. For �> 2, this leads to different contributions
of very low ! to the integral in Eq. (1). For even n�, we

find that � �Dð Þ approximately reduces to ðA�DÞ1þ�a=n��,
from which we obtain the � � 2 result of �e ¼ �= 1þ �ð Þ
in this case, as well. Note that, in Fig. 3(b), we fit a

parameter T0
2 ¼ ½Aa1= 1þ�ð Þ��1, which corresponds to a

hypothetical echo decay time in the absence of very
low-! noise [i.e., putting FðzÞ ¼ 0 for z < 1].
Assuming this formofS !ð Þ, fits to the evenn� [Fig. 3(b)]

yield� ¼ 2:6 and A�1 ¼ 3:6 	s. Using these two parame-
ters, we calculate odd-n� values for T2 by numerically
integrating Eq. (1). As shown in Fig. 4, the obtained value
of T2 is in good agreement with the measured value for
n� ¼ 1 (Hahn echo). We note that the large n� scaling of
T2 � n�� is due to the behavior of S !ð Þ at ! 	 �n�=T2,
which is �0:3ðn�Þ0:28 	s�1 here, while the EOE at small
n� is due to behavior at !< 1=T2, which is �0:15 	s�1.
The consistency between small- and large-n� data indicates
that Sð!Þ �!�2:6 over this range of frequencies (i.e.,
!=2�� 10–100 kHz). The EOE behavior at low n�
can be fit within scenario (ii) using Sð!Þ ¼ A3!2 with
A�1 � 1 	s and !c � 0:08 	s�1. However, this scenario
crosses over to (iii) for n� > 5, where � tends to 1. The
resulting large-n� behavior, T2 � n� � 7 	s, departs sig-
nificantly from the n� 	 8 data in Fig. 4.

(a)

(b)

CPMG

CPMG

FIG. 3 (color online). (a) Experimental singlet return proba-
bilities as a function of time for CPMG with n� ¼ 2; 4; 8. Fits to
PSð�DÞ ¼ 0:5þ V=2 exp½�ð�D=T2Þ��, with � constrained to 2
(solid curves), 3 (dotted curves), and 4 (dashed curves) [34]. It is
difficult to determine � from these fits. (b) Extracted T2 for
even-n� CPMG sequences for � constrained to 1, 2, 3, 4, and 5.
The circle size is proportional to the �2 goodness of fit of PSð�DÞ
in (a). A power-law fit to the form ln½Teven

2 ð�Þ� ¼ lnðT0
2 Þ þ

�e lnðn�Þ, shown for � ¼ 3 (dashed line), gives �e ¼ 0:72.
The fit value �e depends only weakly on � in the range
2–5 (inset). The weighted average over � ¼ 2–5 yields
�e ¼ 0:72� 0:01.

CPMG

FIG. 4 (color online). T2 for all measured n� for CPMG,
extracted using � ¼ 2, 3, and 4 (circles). The circle size for
each � is proportional to the �2 goodness of fit. Theory (black
solid curve) for the integration of Eq. (1) with the CPMG filter
functions and � ¼ �e=ð1� �eÞ ¼ 2:6. Note that Eq. (2) cap-
tures the even/odd effect quantitatively for small n�. The black
dashed line is the power-law fit to the even n� points.
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Using Sð!Þ ¼ A�þ1=!� with parameters A and � fixed
from the even-n� CPMG fit, we can calculate the expected
dependence of T2 n�ð Þ for the CDD pulse sequence using
the known filter functions [12]. For n� ¼ 5, 10, and 21, we
get good agreement between the calculated and measured
T2 [Fig. 5]. For n� ¼ 42, the experimental T2 is shorter
than predicted by theory, possibly reflecting an accumula-
tion of errors for such a large number of pulses. Note that
CDD was shown to be robust to pulse errors [31] only in
the case of two-axis control (i.e., when the � pulses are
about x and y axes alternately) and for a quasistatic bath.

Let us note that S !ð Þ of a very similar form (� 1=!2:5)
was recently inferred in Ref. [32] from the transport data
taken from Ref. [33]. The strong low-frequency noise was
tentatively ascribed to electron current shot noise, generat-
ing much slower Overhauser field dynamics.

Summarizing, the measurements of qubit decoherence
under dynamical decoupling with the CPMG pulse se-
quence have been used to reconstruct the crucial features
of the spectral density of noise dephasing the qubit. Using
the data for even n� of CPMG, we have been able to
estimate the magnitude of noise and its functional form.
The reconstructed spectral density of noise allows us to
calculate the expected decoherence signal for other pulse

sequences, and this calculation agrees with the CDD se-
quence measurements for n� as well as the odd-n� CPMG
data. We have shown that, instead of fitting the exact
functional form of the coherence decay function, an analy-
sis of the scaling of the measured T2 time with the number
of applied pulses allows for a clearer understanding of the
system. We cannot say at this point whether the observed
value �e ¼ 0:72 is characteristic of Overhauser-dominated
dephasing in general or just our particular combination of
noise sources.
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Visibilities for � ¼ 4 are n� ¼ 2, V ¼ 0:46� 0:03; n� ¼
4, V ¼ 0:42� 0:02; and n� ¼ 8, V ¼ 0:56� 0:03.
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