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We consider the non-Fermi-liquid quantum critical state of the spin-S two-impurity Kondo model and

its potential realization in a quantum dot device. Using conformal field theory and the numerical

renormalization group, we show the critical point to be identical to that of the two-channel Kondo model

with additional potential scattering, for any spin S. Distinct conductance signatures are shown to arise as a

function of device asymmetry, with the square-root behavior commonly believed to arise at low-energies

dominant only in certain regimes.

DOI: 10.1103/PhysRevLett.108.086405 PACS numbers: 71.10.Hf, 73.21.La, 73.63.Kv

Systems comprising several quantum impurities inher-
ently display an interplay between impurity-bath and in-
terimpurity couplings [1–7]: the tendency for impurities to
be Kondo screened by conduction electrons competes with
screening by interimpurity spin-singlet formation. Rich
physics can thereby arise, as demonstrated, for example,
in coupled quantum dots [7,8], magnetic impurities in
metals [1], and recent two-impurity STM experiments
[9]. Indeed, the same essential physics governs the analo-
gous propensities for heavy fermion behavior or magnetic
ordering in lattice systems [10].

The two-impurity, spin- 12 Kondo model (2IKM) is the

simplest to capture this competition [1]: local singlet
formation is favored by an interimpurity exchange K,
while coupling of each impurity to its own conduction
channel favors separate Kondo screening below an
effective single-channel, single-impurity scale TK [2–5].
The lack of interchannel charge transfer in the 2IKM
permits two distinct phases, and a quantum phase transition
(QPT) results on tuning Kc � TK. At the critical point,
non-Fermi-liquid (NFL) physics arises below Tc,
characterized [3] by anomalous properties such as
fractional residual entropy and singular magnetic
susceptibility.

This critical physics is also surprisingly robust to some
perturbations, notably breaking of mirror (parity) symme-
try or particle-hole symmetry [6]. Such perturbations are
marginally irrelevant in the sense that the interimpurity
coupling can be retuned to recover the critical point in all
cases. But despite considerable effort, 2IKM critical phys-
ics has proved experimentally elusive—mainly due to
interchannel charge transfer which smooths the QPT into
a crossover [4]. Regular Fermi liquid (FL) physics then sets
in below an energy scale T�, and if the degree of charge
transfer is large enough that T� � Tc, no evidence of the
critical point will be observed [11]. This is the situation
relevant to the recent two-impurity experiments of Ref. [9]:
coupling between one impurity on a metal surface and one

on a STM tip was also accompanied by strong tip-surface
tunneling.
Reducing the degree of interchannel charge transfer

might be possible in a quantum dot device such as that
proposed in Ref. [6]. Provided T� � Tc, NFL behavior
should be observable in an intermediate energy window, as
can be understood from a 2IKM critical perspective (in-
deed the eventual crossover to FL physics is wholly char-
acteristic of the intermediate NFL state [12]).
An alternative route could, however, involve use of a

quantum box, which acts as an interacting lead [13].
Coupling a single dot to one regular lead and one box
tuned to the Coulomb blockade regime suppresses inter-
channel charge transfer completely. This has been ex-
ploited to access single-impurity two-channel Kondo
(2CK) physics [14,15] in a real device [13]. Here we
propose simply to interject a second dot in series between
the ‘‘leads’’ to realize 2IKM physics. While parity and
particle-hole symmetries are thereby broken, the QPT itself
is unaffected. Robust NFL behavior should persist down to
the lowest energy scales at the critical point.
Here we address two key questions in regard to potential

realization of 2IKM physics. First, what is the nature of the
critical point itself? We show that it is identical to that
arising in a 2CKmodel with additional potential scattering,
independent of parity breaking. Further, we show that the
same QPT and 2CK critical point arises in the spin-S gen-
eralization of the 2IKM. Second, what are the signatures of
criticality in measurable quantities such as conductance?
These reflect renormalization group (RG) flow from higher-
energy fixed points (FPs) and depend sensitively on parity
breaking. We find, in particular, that the square-root behav-
ior commonly anticipated [6,7] at low energies is absent in
the standard channel-symmetric 2IKM.
Nature of 2IKM critical point.—The 2IKM reads:

H2IKM¼H0þHpsþJL ~SL � ~s0LþJR ~SR � ~s0RþK ~SL � ~SR;
(1)
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where H0 ¼ P
�;k�kc

y
k��c k�� describes two free conduc-

tion channels � ¼ L=R, with density of states �, and spin

density at the impurities ~s0� ¼ P
��0c y

0��ð12 ~���0 Þc 0�0�

(where c y
0�� ¼ P

kc
y
k��). Potential scattering is included

via Hps ¼ P
�V�c

y
0��c 0��, and ~S� are spin- 12 operators

for the impurities. The 2IKM has been extensively studied
using a number of powerful techniques [2–5,12], and cer-
tain similarities have been found [4–6,11,12] between it
and the 2CK model [14,15],

H2CK ¼ H0 þHps þ JL ~S � ~s0L þ JR ~S � ~s0R; (2)

with ~S a spin- 12 operator for a single impurity, exchange

coupled to two independent conduction channels. The
physics of the 2CK model is itself immensely rich [15]:
the impurity is fully Kondo screened by the more strongly
coupled conduction channel below an effective single-
channel scale TK, producing two distinct phases as a
function of (JL � JR). But when JL ¼ JR, the frustration
inherent when two channels compete to screen the impu-
rity results in ‘‘overscreening,’’ and NFL physics results
below T2CK

K [15]. Strikingly, both 2CK and 2IKM have the
same fractional residual entropy, Simp ¼ 1

2 lnð2Þ.
Conformal field theory (CFT) has been used to describe

the critical points of both models [4,16]. In the ‘‘unfolded’’
representation, H0 is written in terms of left-moving chiral
Dirac fermions. The CFTs for each model can be separated
into different symmetry sectors. In particular, the
SUð2Þ2 � SUð2Þ2 �Uð1Þ flavor, spin, and charge symme-
tries of the 2CK model [16] and the Uð1Þ �Uð1Þ �
SUð2Þ2 � Z2 left or right charge, total spin, and Ising
symmetries of the 2IKM [3] can be exploited. The 2CK
and 2IKM critical fixed point Hamiltonians take the same
form as H0, but with modified boundary conditions that
affect only the spin sector of the 2CK model [16] or the
Ising sector of the 2IKM [4]. The finite size spectrum
(FSS) at the critical point of each model can then be
determined [4,16]. In the channel-symmetric case JL ¼
JR and for Hps ¼ 0, the FSS of the 2CK critical point is

characterized by the fractions 0; 1=8; 1=2; 5=8; 1; . . . , while
for 2IKM a different FSS arises: 0; 3=8; 1=2; 7=8; 1; . . .

Despite these apparent differences between the critical
FPs of the two models, the 2IKM can be mapped onto an
effective 2CK model in special cases [5,6,11]. The key
requirement for that mapping is of course the generation of
an effective spin- 12 local moment (LM), which can then be

overscreened by symmetric coupling to two conduction
channels. In the channel-asymmetric limit JL � JR, 2CK
critical physics arises via a simple mechanism [6], first
involving Kondo screening of the L impurity by the L lead
on the single-channel scale TL

K, followed by second-stage
overscreening of the R impurity by the R lead and an
effective coupling to the remaining Fermi liquid bath states
of the L lead below Tc. An effective 2CK model of form
Eq. (2), valid at low energies T & TL

K, can be derived

formally using the approach of Ref. [17], exploiting the
Wilson chain representation [18], and effective couplings
follow as �JeffL � K=TL

K and �JeffR � ½1=�JR � 1=�JL��1.
The 2CK FP is thus stable when K ¼ Kc � TL

K�J
eff
R , so the

low-energy physics of the 2IKM is in this case wholly
equivalent to that of the 2CK model.
Importantly, however, the L channel free electrons in the

effective 2CK model acquire a �=2 phase shift due to the
first-stage single-channel Kondo screening of the L impu-
rity in the original 2IKM. This is seen clearly in the
dynamics of the asymmetric 2IKM. To demonstrate this,
and to highlight the basic physical picture, Fig. 1 shows
spectra D��ð!Þ 	 ��� Im½t�ð!Þ� vs j!j=D with t�ð!Þ
the scattering t matrix [19]. Results are obtained from
numerical renormalization group (NRG), exploiting all
model symmetries, discretizing conduction bands of width
2D logarithmically using � ¼ 3, and retaining 8000 states
per iteration in each of z ¼ 3 interleaved calculations (for a
review, see Ref. [18]).
Single-channel Kondo screening of the L impurity by

the L lead on the scale of TL
K is seen directly in the L

spectra in the upper panel of Fig. 1: a Kondo resonance,
reaching the unitarity limit D�L ¼ 1, which has precisely
the form of a regular single-channel Kondo (1CK) model
[10]. This embodies the �=2 phase shift in the L channel,
but no such feature is observed on this energy scale in the R
spectra (lower panel of Fig. 1), indicating that the R
impurity is still essentially free. On tuning the interim-
purity coupling K closer to the critical point of the 2IKM,

FIG. 1 (color online). Spectra D��ð!Þ versus frequency
j!j=D for channels � ¼ L and R (upper and lower panels,
respectively) for the asymmetric 2IKM with fixed Kondo
exchanges �JL ¼ 0:1, �JR ¼ 0:05, varying interimpurity
exchange K (and Hps ¼ 0). Plotted using K ¼ Kcð1
 10�nÞ
for dashed lines and solid lines, with integer n ¼ 1 ! 6 ap-
proaching progressively the critical point Kc � TL

K � 10�6D
(dotted line). Circles: A 1CK model with �J ¼ �JL.
Diamonds: D�2CKð!Þ for a pure 2CK model with T2CK

K ¼ Tc.

Squares: D~�2CKð!Þ ¼ 1�D�2CKð!Þ.
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the spectra in both channels fold progressively onto the
critical spectra. For energies j!j=D � TL

K, the critical
spectrum D�Rð!Þ is precisely that of a 2CK model
D�2CKð!Þ with T2CK

K ¼ Tc. But the critical spectrum in
the left channel isD�Lð!Þ ¼ 1�D�2CKð!Þ [17]. Thus, at
the channel-asymmetric critical point [6],

D��ð!Þ �
j!j�Tc

1
2 þ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j!j=Tc

q
; (3)

with � ¼ 
1 for channel L=R resulting from the addi-
tional L channel �=2 phase shift, and � a constant Oð1Þ.

This phase shift can be included in the 2CK model,
Eq. (2), via the potential scattering term Hps (i.e.,

VL ! 1 but VR ¼ 0, accompanied also by retuning JL
and JR to access the critical point). This is equivalent to
adding infinite uniform and staggered potential scatterings,
which affect, respectively, the charge and flavor sectors of
the 2CKmodel. Modifying the CFT for the critical point of
the 2CK model to include this, we find [20] the boundary
condition becomes equivalent to that of the 2IKM. The
FSS is also naturally affected and is given by [20]

E2CK ¼ 1
8ðQ� aÞ2 þ 1

4jðjþ 1Þ þ 1
4jFðjF þ 1Þ � bjzF; (4)

whereQ, j, and jF are the charge, spin, and flavor quantum
numbers. Uniform potential scattering shifts the charge
parabolas, while staggered potential scattering biases the
flavor sector. The �=2 phase shift in the L channel corre-
sponds to a ¼ 1 and b ¼ 1

2 [20]. Only certain quantum

number combinations are allowed at the critical point, as
given by the nontrivial gluing conditions derived in
Ref. [16], and which reproduce fully the 2IKM spectrum
when used with Eq. (4) (see Fig. 2 of [20]). One remarkable
result obtained from our NRG calculations [20] is that the
FSS at the critical point of the 2IKM does not depend on
channel asymmetry (whence, in particular, the critical
point possesses an emergent parity symmetry, irrespective
of bare model symmetries). Further, we have shown [20]
that the critical point for one model with potential scatter-
ing VL and VR is equivalent to the critical point of the other
model with different potential scattering ~VL and ~VR. The
2IKM and 2CK critical FPs are thus equivalent in the sense
that they lie on the same marginal NFL manifold parame-
trized by Hps.

Conductance line shapes and symmetry.—Full RG flow
from the LM FP to the 2CK FP is thus recovered at the
critical point of the asymmetric 2IKM. This is manifest [6]
in the conductance arising, e.g., when a given channel � ¼
L=R is split into source and drain. At zero bias, it is
given exactly [21] in terms of the scattering t matrix
(considered for the channel-asymmetric case in Fig. 1)
by G�

2IKðVsd ¼ 0; TÞ=ð2e2h�1G�
0 Þ ¼ �R1

�1 d!@fð!=TÞ=
@!D��ð!; TÞ, with fð!=TÞ the Fermi function, and the
impurity-lead coupling parametrized by G�

0 ¼
4��

s �
�
d=ð��

s þ ��
d Þ2, in terms of the � ¼ L=R

hybridizations to source (��
s ) and drain (��

d ). Indeed, in

the limit ��
s � ��

d (i.e., G�
0 � 1), the T ¼ 0 conductance

follows as ~G�
2IKðVsdÞ ¼ G�

2IKðVsd; T ¼ 0Þ=ð2e2h�1G�
0 Þ ¼

D��ð! ¼ Vsd; T ¼ 0Þ, and hence from Eq. (3) one finds
at low energies Vsd � Tc,

~G�
2IKðVsdÞ ¼ 1

2 þ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vsd=Tc

q
þ ��ðVsd=TcÞ þ � � � ; (5)

where we include also a term linear in Vsd=Tc.
The leading square-root behavior of Eq. (5) has been

viewed as the ‘‘smoking gun’’ signature of this 2CK phys-
ics [6,22], and was used to identify the critical point in the
2CK experiment of Ref. [13]. But we note that, unlike the
2CK model, the 2IKM does not possess SUð2Þ flavor
symmetry. Since symmetry dictates which operators can
act in the vicinity of the critical FP, this is naturally
reflected in the asymptotic conductance through the coef-
ficients � and ��. Indeed, the full energy dependence of
conductance depends on the unstable FPs, whose vying
effects on RG flow again depend on symmetry and model
parameters. For example, in the usual symmetric 2IKM
[Eq. (1) with JL ¼ JR and Hps ¼ 0], no incipient LM is

formed: there is no intermediate energy window with, e.g.,
Simp ¼ lnð2Þ entropy, and RG flow proceeds directly to the

2CK FP from the LM� LM high energy FP describing a
pair of free impurities [Simp ¼ lnð4Þ].
The effect of parity breaking is explored in Fig. 2,

showing NRG results for conductance versus bias Vsd

at the 2IKM critical point (obtained for G�
0 � 1, as

above). Conductance in the asymmetric limit JL � JR is

FIG. 2 (color online). T ¼ 0 conductance G�
2IK=ð2e2h�1G�

0 Þ
through channel � ¼ L and R (solid and dashed lines) versus
bias Vsd=D, at the critical point. Shown for �JL ¼ 0:075 � �JR,
varying �JR ¼ 0:075 ! 0:05 in steps of 0.0025, with K ¼ Kc �
T1CK
KL retuned in each case (and Hps ¼ 0). Thick solid line is the

symmetric case JL ¼ JR; asymmetry JL=JR � 1 increases in
direction of arrows. Circle and diamonds: Pure 1CK and 2CK
scaling spectra. Inset: Zero-bias conductance versus T=Tc for
JL=JR ¼ 1 and 2 (and � ¼ L;R), exhibiting, respectively, lead-
ing linear and square-root behavior (dotted lines).
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consistent with Ref. [6], and physical expectation as above
[see Eq. (5)]. Here, the asymptotic conductance is
~GR
2IKðVsdÞ ’ 1� ~GL

2IKðVsdÞ 	 ~G2CKðVsdÞ at low energies

Vsd � TL
K, where TL

K � Tc 	 T2CK
K and with ~G2CKðVsdÞ

the conductance of the standard 2CK model [13,22] (dia-
monds). Thus, on exchanging JR $ JL, the coefficient� of
Eq. (5) must change sign. But what happens as the asym-
metry is decreased? We find the leading square-root con-
tribution in Eq. (5) vanishes (see Fig. 2), as �� ðJL � JRÞ,
and leading linear behavior emerges at the symmetric
point JL ¼ JR (the same naturally arising as a function of
T at zero bias, see Fig. 2 inset). In fact, linear-Vsd behavior
also emerges as the symmetric point is approached, since
the square-root term dominates over a shrinking window
Vsd=Tc � ð�=��Þ2.

Another striking feature of the conductance in more
channel-symmetric situations is the behavior at higher T
or energies * Tc � TL

K. Here the behavior is wholly
characteristic of single-impurity, single-channel Kondo
physics, as seen by comparison to the circles in Fig. 2.

The absence of square-root behavior in conductance of
the symmetric 2IKM is contrary to common belief [6,7], so
we now sketch our CFT proof [20]. As pointed out in
Refs. [4,6], corrections to the t matrix in the vicinity of
the critical point (whose ! dependence displays the same
scaling as conductance) are determined from irrelevant
boundary operators consistent with symmetry. Two such

operators play a role here: �H1 ¼ c1�
0 and �H2 ¼ c2 ~J�1 �

~	 (in the notation of Ref. [4]). The operator ~J�1 � ~	 is the
leading irrelevant operator of the 2CK FP, whose effect on
the t matrix is known [23] to yield the famous square-root

behavior. However, ~J�1 � ~	 has odd parity in the 2IKM
(unlike 2CK), which implies that its coefficient c2 � ðJL �
JRÞ vanishes in the symmetric limit. In both models, �H1

does still contribute (c1 always being finite [4]). One might

naively expect �0 to behave similarly to ~J�1 � ~	 since they
have the same scaling dimension 3=2. However, the key

difference between �0 and ~J�1 � ~	 is that only the latter is a
Virasoro primary field. Consequently [20], the leading
square-root correction to the t matrix from �H1 vanishes.
In the symmetric 2IKM, the leading square-root behavior
of conductance thus also vanishes.

Spin-S 2IKM.—Multilevel quantum dots can behave like
S ¼ 1 impurities [24], and high-spin impurities such as Co
(S ¼ 3=2) have been manipulated with STM [25]. Thus a
natural and pertinent generalization of the 2IKM involves

spin-S impurities: the model remains Eq. (1), but ~SR, ~SL are
now spin-S operators.

AQPTmust again arise, as follows from the same line of
argument as the spin- 12 2IKM [3]. On tuning K there is a

phase-shift discontinuity on going from the local singlet
phase for large K to a separated spin-S underscreened
Kondo phase for small K. The nature of the transition
arising at Kc is again clear by considering the asymmetric

limit JL � JR. For concreteness consider S ¼ 1, although
the argument extends easily to higher S. NRG results for
the entropy SimpðTÞ versus T are shown in Fig. 3, together

with illustrations highlighting the key physical processes.
In 3(a) the impurities are completely decoupled (K ¼ 0),
with each thus underscreened to a spin- 12 by its attached

lead �, on its own single-channel Kondo scale T�
K [with

residual entropy 2 lnð2Þ]. For small finite K < TR
K, 3(b),

these residual moments form a local singlet state on the
scale T � K, so the residual entropy is quenched. On
increasing the interimpurity K further (TR

K < K < TL
K),

the underscreened spin- 12 L impurity and the still

unscreened spin-1 R impurity are coupled and form a local
doublet state on the scale T � K. This can then be single-
channel Kondo screened by an effective coupling either to
the L channel, 3(c), or the R channel, 3(e), and the residual
entropy is again quenched. However, L and R effective
couplings can become equal on fine-tuning K. This is the
single spin- 12 2CK critical point, 3(d), with residual entropy
1
2 lnð2Þ. For large K � TL

K, a local interimpurity singlet

state arises as expected, 3(f).
Analysis of the finite size spectrum at the critical point

shows it to be identical to that of the regular spin- 12 2IKM,

independent of asymmetry [20], and is hence that of a 2CK
model with additional potential scattering.
Conclusion.—We have shown the critical point of the

spin-S 2IKM, including the spin- 12 variant, to be ubiqui-

tously 2CK in nature. However, conductance line shapes
measurable in experiment exhibit distinctive behavior de-
pending on underlying symmetries, the low-energy behav-
ior, in particular, evolving from square-root to linear
behavior in Vsd or T as the channel-symmetric point is
approached, and for any spin S.

FIG. 3 (color online). Impurity entropy SimpðTÞ versus T=D for
the 2IKM with spin-1 impurities. Plotted for fixed �JL ¼ 0:15,
�JR ¼ 0:05, varying K=D ¼ 0; 10�13; 3� 10�7, Kc �
6� 10�5, 2� 10�4, and 10�2 for lines (a)–(f). The correspond-
ing physical processes are illustrated in panels (a)–(f): impurities
denoted as circles and conduction band orbitals (in the Wilson
chain representation [18]) as squares. For discussion, see text.
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