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Here we show that floating objects in stratified fluids can be cloaked against broadband incident waves

by properly architecting the bottom corrugations. The presented invisibility cloaking of gravity waves is

achieved utilizing a nonlinear resonance concept that occurs between surface and internal waves mediated

by the bottom topography. Our cloak bends wave rays from the surface into the body of the fluid. Wave

rays then pass underneath the floating object and may be recovered back to the free surface at the

downstream bearing no trace of diffraction or scattering. The cloak is the proper architecture of bottom

corrugations only, and hence is surface noninvasive. The presented scheme is a nonlinear alternative to the

transformation-based cloaking, but in the context of dispersive waves.

DOI: 10.1103/PhysRevLett.108.084502 PACS numbers: 47.35.Bb, 47.11.Kb, 47.20.Ma, 47.55.Hd

The density of water in an ocean or a sea is typically not
constant. The variation of density is due to, mainly, varia-
tions of temperature and salinity. Solar radiation heats up
the upper layer of the water, and the flow of rivers and the
melting of ice lower the water density near the surface.
Over time these effects add up to form a stable density
stratification with the lighter fluid on top and the denser
fluid below it. Stratified waters, besides regular surface
waves, admit the so-called internal waves, which are grav-
ity waves that propagate within the body of the water [1].

Field observations have reported ubiquitously nonuni-
form vertical gradient of stratification in the oceans: water
density is nearly constant in an upper layer and then jumps,
over a (relatively) thin horizontal plane of sudden density
change—the so-called thermocline—, to a denser lower
layer fluid. Density stays almost constant below the ther-
mocline to the ocean floor (e.g., [2]). Therefore, for ocean
scenarios a two-layer model, with the density of each layer
constant within the layer, is plausible and widely used.
If a two-layer density stratification assumption is em-
ployed, internal waves are restricted to propagate on the
thermocline only. These waves, sometimes also called
interfacial waves, are widely observed in the oceans,
seas, and lakes [1,3–5].

Here we present the formation of a resonance between
surface waves and interfacial waves caused by the physics
of inhomogeneity (stratification) of ocean waters, the dis-
persive nature of gravity waves, and the nonlinearity of
equations governing the motion of a fluid. This resonance
can be utilized to create a cloak of invisibility about ocean
objects against incident surface waves. The invisibility
cloak of water waves must detour wave rays about the
object as if the object does not exist. Incident waves, as a
result, must be able to propagate forward without inter-
ruption, i.e., with no trace of diffraction.

Specifically, consider a monochromatic surface wave
train with wavelength �s¼2�=ks arriving from x¼�1.
Our objective is to create a cloaked buffer zone about

x ¼ 0 where our hypothetical floating object resides. We
will show that a series of properly architected bottom
undulations can effectively transfer the energy from the
incident surface wave to internal waves, i.e., from the
surface to within the body of water, and vice versa.
Internal waves can later be fully recovered back to the
surface at downstream. These recovered surface waves in
the downstream carry no trace of the object because they
have bypassed the encounter via nonlinear interaction with
our bottom-mounted cloak; hence, invisibility is achieved.
In contrast to electromagnetic and acoustic cloaking

based on coordinate transformation [6] and the use of
metamaterials [7–12], where so far the invisibility is lim-
ited to a single frequency (radar and microwave), and also
perfect invisibility is impossible [8,13], we prove theoreti-
cally that in our scheme a complete cloaking is achievable.
We also present computational evidence of monochromatic
and broadband cloaking. We note that, specific to ocean
applications, the cloaking is more important in protecting
ocean objects against powerful incoming waves than mak-
ing their trace invisible.
Consider a two-layer density stratified fluid with �u, �‘

and hu, h‘, respectively, upper and lower layer densities
and depths (Fig. 1). In each layer, we assume that the fluid
is homogeneous, incompressible, immiscible and inviscid,
and we neglect the effects of surface tension. Under these
assumptions a two-layer fluid admits two types of propa-
gating waves associated with a given frequency ! (see
Supplemental Material SI for the governing equation [14]):
a surface wave with the wave number ks and an interfacial
wave with the wave number ki � ks, where ks, ki are
solutions of the so-called dispersion relation

Dðk;!Þ � !4ðRþ cothkhu cothkh‘Þ
�!2gkðcothkhu þ cothkh‘Þ
þ g2k2ð1�RÞ ¼ 0; (1)
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in which R ¼ �u=�‘ is the density ratio and g is gravity
acceleration.

Bottom roughnesses scatter both surface and interfacial
waves (e.g., [15]). If bottom irregularities follow a specific
pattern then scattered waves may constructively interfere
to form one single ray with a specific wavelength. This
phenomenon is called Bragg resonance of water waves
named after its close cousin phenomenon in solid state
physics of crystals [16]. Contrary to Bragg reflection
from crystals which is a linear phenomenon, Bragg
resonance of water waves is a nonlinear phenomenon. In
perturbation expansion of governing equations in terms of
a small parameter (usually wave steepness ka, k being the
wave number and a the amplitude of wave) Bragg reso-
nance occurs at the second order (class I), third order (class
II and III), and higher orders of nonlinearities [17,18].

In a homogeneous fluid if bottom has periodic undula-
tions with the wavelength equal to half of the wavelength
of the incident wave, then incident waves will be (partially)
reflected [17–21]. The reflection coefficient (ratio of am-
plitude of reflected wave to the amplitude of incident
wave) is a function of length of the patch of undulations
and asymptotically approaches one as the extent of the
patch stretches to infinity.

For a two-layer density stratified fluid we have recently
shown [22,23] that at the leading (second) order nonlinear-
ity six scenarios of Bragg resonance is possible. If we have
an incident surface wave (ks), then depending on bottom
properties the resonant wave may be a reflected surface
wave, a reflected interfacial wave or a transmitted interfa-
cial wave. If the incident wave is an interfacial wave, then
the resonant wave may be a reflected interfacial wave, a
reflected surface wave or a transmitted surface wave.

For cloaking purposes we are interested in cases where
the resonant wave is a transmitted wave. Specifically, con-
sider an incident surface wave of wave number ks. Now, if
bottom undulations wave number kb satisfies the resonance
condition kb ¼ ki � ks, then over the patch of bottom
ripples the surface wave gives its energy to the interfacial
wave (see left side of Fig. 1). If amplitude of incident
surface wave and resonant interfacial wave is given, re-
spectively, by AsðXÞ and AiðXÞ where X is horizontal
dimension measured from the beginning of the ripple
patch, then using multiple scales techniques it can be
shown that [22]:

AsðXÞ ¼ � cosð�XÞ; AiðXÞ ¼ � sinð�XÞ; (2)

where �, � and � are functions of ocean parameters (see
Supplemental Material SII [14] for expressions of these
coefficients). If the length of the bottom patch is exactly
Xb ¼ �=ð2�Þ then Eq. (2) predicts that the amplitude of
incident wave reaches exactly zero at the end of the patch.
Physically speaking, at this distance surface wave energy
has been completely transferred to the interface. The same
bottom patch can in reverse transfer the energy of an
incident interfacial wave to a resonant surface wave and
is used on the right hand side of the ocean object to recover
the surface wave (Fig. 1). Therefore, theoretically, a perfect
cloaking is achieved.
If the incident wave train is polychromatic, i.e., with

many components forming a spectrum of waves, leading
order cloaking is achieved by the superposition of proper
bottom undulations for each of incident wave components.
This, usually, does not require additional space, but just a
polychromatic bottom undulations, hence can be readily
achieved.
Theoretical analysis of broadband cloaking is, how-

ever, very limited. Usually when more than just a few
wave components interact simultaneously it is algebrai-
cally tedious—if not impossible—to track their interac-
tions. This fact becomes more highlighted when we
notice that for an accurate prediction of the evolution
of a spectrum of waves over a patch of bottom ripples
several nonlinear interaction scenarios including, but not
limited to, sub and superharmonic generations [24,25],
triad and quartet resonance between waves [26–28] and
high-order Bragg resonances [22,23] must be taken into
account. To address the problem of many (typically N ¼
Oð104Þ] waves interacting and to consider an arbitrary
order of nonlinearity [typically M ¼ Oð10Þ in terms of
perturbation expansion) we have recently extended a
direct simulation scheme based on a high-order spectral
method (HOS), originally derived to study nonlinear
wave-wave [29] and wave-bottom [17] interactions, to
a two-layer density stratified fluid with finite-depth upper
and lower layers ([22], where extensive convergence
tests and validations with experimental data are also
provided). Here we use HOS to, besides validating our

FIG. 1 (color online). Schematic representation of cloaking
mechanism in a two-layer density stratified fluid. An incident
wave of wave number ks ¼ 2�=�s gives its energy to an
interfacial wave ki, of the same frequency, over a patch of
bottom ripples kb ¼ ki � ks hence leaving a cloaked buffer
zone of invisibility. The interfacial wave can be recovered at
the downstream (x > 0) by the same mechanism.
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theoretical predictions, study the initial-value problem of
surface waves (monochromatic and broadband) imping-
ing upon our cloak of invisibility.

We first consider a monocrhomatic incident surface
wave of wave number and frequency ksH ¼ 0:34 and

!
ffiffiffiffiffiffiffiffiffiffi
H=g

p ¼ 0:36, withH ¼ hu þ h‘, in a two-layer density
stratified fluid ofR ¼ 0:95 and hu=H ¼ 1=2 (relevance of
chosen values to real life applications are discussed in the
Supplemental Material, SIII). At t=T ¼ 0 it is assumed that
the water surface is calm and a train of waves arrives from
x ¼ �1 to the domain of our interest �70< ksx < 70.
A bottom patch of dimensionless wave number kbH ¼
kiH � ksH ¼ 4:86 (where ki is the interfacial wave solu-
tion of (1) for frequency !) forms a resonance between ks,
ki. From multiple scales analysis results (2) it is seen that if
nb ¼ kb=ð4�Þ number of bottom undulations are placed on
the seafloor all the energy of ks is transformed to ki.
Comparison of theoretical results (2) (dashed lines) with
direct simulation of initial-value problem of this example
after a steady state is reached (solid lines) are presented in
Fig. 2. For direct simulation we have chosen N ¼ 2048,
M ¼ 3, T=�t ¼ 64 for which the computation is con-
verged. Figure 2 shows a good agreement between analyti-
cal results and direct computations. The cloaked zone is
clearly formed in the area of �6< ksx < 6 where surface
activity is minimal.

To better assess the transient response of our cloak as it
encounters the incident wave and until it reaches a steady
state, Fig. 3 shows the amplitude of waves predicted by
solving the initial-value problem using our spectral-based
direct simulation scheme. Amplitude of surface waves at
three stations of x1, x2, and x3 (cf. Fig. 1), respectively,
upstream, in the cloaked zone and downstream, are

plotted in Figs. 3(a)–3(c). In each figure the amplitude of
waves in the presence and in the absence of the cloak is
presented. In upstream [Fig. 3(a)] and in the absence of the
cloak the monochromatic wave train marches forward
without any interruption; hence, no variation in the ampli-
tude is expected. If the cloak exists Fig. 3(a) shows again
no variation in the upstream amplitude which implies
that the cloak does not reflect any waves. In the cloaked
zone however, the surface amplitude is greatly reduced
[Fig. 3(b)]. The observed nonzero surface activity (i.e.,
the error) is mainly due to the image of the interfacial
waves on the surface. Because of its short wavelength this
image is easily detectable in Fig. 2 on the surface of water
in the cloaked zone. Note that these short waves are not
seen outside the cloak where interfacial wave amplitude
is small. Finally, Fig. 3(c) shows the downstream
spectrum. With the cloak and after a transition period is
passed, the downstream spectrum approaches that of the
upstream. The three Figs. 3(a)–3(c) show the performance
of our bottom-mounted cloak in creating a buffer zone of
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FIG. 2 (color online). Cloaking against a monochromatic in-
cident surface wave. Plotted results are analytical solution based
on multiple scales theory (2) (dashed line), and direct simulation
of HOS (solid line). A surface wave ksH ¼ 0:34 enters from
x ¼ �1 and exchanges its energy to the interface as it travels
over the first bottom patch (� 36< ksx <�6). In a reverse
process the interfacial wave gives back its energy to the
surface as it travels over the second patch of bottom ripples
(6<ksx<36). As a result, a cloaked buffer zone (�6<ksx<6)
is formed where surface activity is very small. Surface and
interfacial elevations are magnified by factors of, respectively,
1000 and 50 for easier realization.
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(a).Upstream Surface Amplitude (probe at x1)
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(b). Cloaked Zone Surface Amplitude (probe at x2)
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(c). Downstream Surface Amplitude (probe at x3)

FIG. 3 (color online). Time history of evolution of surface
wave amplitude obtained from direct simulation at
(a) ksx1 ¼ �40, (b) ksx2 ¼ 0, and (c) ksx3 ¼ 40 (cf. Fig. 1).
Results plotted are the upstream (incident) wave in the absence
of bottom undulations given for the reference (dash-dotted line),
and the surface wave amplitude in the presence of cloaking
(solid line).
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invisibility, and also in recovering the wave to the surface
with the minimal loss.

For a broadband spectrum of incident waves, leading
order cloaking is achieved by the superposition of bottom
profiles required by each of wave components in the spec-
trum. Consider a broadband Gaussian spectrum of incident
waves (Fig. 4, solid line) arriving to the location of our
hypothetical floating object to be cloaked. For direct simu-
lation purposes, we discretize this spectrum into five indi-
vidual waves and superimpose the five bottom wave
number on top of each other to form a polychromatic patch
of corrugations (details of numerical simulation is pro-
vided in the Supplemental Material SIV [14]). Figure 4
presents the result of direct simulation of an incident
broadband spectrum as it travels over the bottom cloak.
After a steady state is reached the cloaked zone (dash line)
experiences negligible wave activity, only�%5 of incident
wave energy. The downstream spectrum (dash-dotted) is
close to the incident spectrum recovering more than %70
of incident wave energy. Besides the source of error al-
ready discussed for monochromatic cloaking, in the case of
a broadband spectrum nonlinear interactions between
waves within the spectrum are also affecting the perform-
ance of the cloaking. A smart design of an efficient (higher-
order) broadband cloak requires care to avoid unwanted
resonances.

Results obtained here are also valid in the presence of a
floating object. An example of cloaking in the presence of a
heaving disturbance is discussed in the Supplemental
Material SV [14]. If the bottom is not flat (e.g., sloped)
then ripples can be adjusted in order to retain the high
performance of the cloaking scheme (see Supplemental
Material SVI [14]). It is to be noted that the demonstrated
scheme for unidirectional cloaking can be extended to
omnidirectional cloaking by the use of radial Bragg reso-
nance (i.e., concentric circular bottom undulations).
Nevertheless, in the context of ocean waves, due to the
refraction of waves in (relatively) shallower waters, this is
of less importance and hence is not pursued here.

In summary, we have demonstrated that floating objects
in stratified fluids can be cloaked against broadband inci-
dent waves by properly architecting the bottom corruga-
tions. The concept behind the presented scheme is based on
nonlinear resonance of surface and interfacial waves with
the bottom topography and is obtained due to the disper-
sive nature of gravity waves. Perfect cloaking against
monochromatic waves can theoretically be achieved and
was further investigated via a direct high-order spectral
scheme. Broadband cloaking was also elucidated and its
performance is discussed. The cloak introduced here is the
alignment of bottom corrugations only, and therefore is
surface noninvasive. Cloaking in seas by bottom modifica-
tions may play a role in protecting near shore or offshore
structures (buoys) and in creating shelter for fishermen
during storms. In reverse it can result in disappearance
and appearance of surface waves in areas where sandbars
(or any other appreciable bottom variations) exist.
Bragg scattering or resonance, although may differ in

details, but is a common concept in solid state physics
[30,31], optics (e.g., [32]), acoustics (e.g., [33]) and hydro-
dynamics [17–19]. The idea demonstrated here may have
similar implications in any system admitting Bragg reso-
nance and if its medium can be freely architected.
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