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We investigate the diffraction conditions and associated formation of stop gaps for waves in crystals

with different Bravais lattices. We identify a prominent stop gap in high-symmetry directions that occurs

at a frequency below the ubiquitous first-order Bragg condition. This sub-Bragg-diffraction condition is

demonstrated by reflectance spectroscopy on two-dimensional photonic crystals with a centered rectan-

gular lattice, revealing prominent diffraction peaks for both the sub-Bragg and first-order Bragg

conditions. These results have implications for wave propagation in 2 of the 5 two-dimensional

Bravais lattices and 7 out of 14 three-dimensional Bravais lattices, such as centered rectangular, triangular,

hexagonal, and body-centered cubic.
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The propagation and scattering of waves such as light,
phonons, and electrons are strongly affected by the peri-
odicity of the surrounding structure [1,2]. Frequency gaps
called stop gaps, emerge for which waves cannot propagate
inside crystals due to Bragg diffraction. Bragg diffraction
is important for crystallography using x-ray diffraction [3]
and neutron scattering [4]. Diffraction determines elec-
tronic conduction of semiconductors [1,2] and of graphene
[5], and broad gaps are fundamental for acoustic properties
of phononic crystals [6,7] and optical properties of
photonic metamaterials [8,9].

Bragg diffraction is described in reciprocal space by the

von Laue condition ~kout � ~kin ¼ ~g, where ~kout, ~kin are the
outgoing and incident wave vectors and ~g is a reciprocal
lattice vector. As a result, a plane exists in reciprocal space
for which the von Laue condition is satisfied, called a
Bragg plane. When the incident and outgoing wave vectors
are located on a Bragg plane these waves are hybridized,
thereby opening up a stop gap at the Bragg condition. The
boundary of the Brillouin zone is formed by intersecting
Bragg planes and therefore gaps open on this boundary [1].
When diffraction involves a single Bragg plane, we are
dealing with well-known simple Bragg diffraction, which
corresponds in real space with the well-known Bragg
condition: m� ¼ 2d cosð�Þ. Here m is an integer, � is the
wavelength inside the crystal, � is the angle of incidence
with the normal to the lattice planes, and d is the spacing
between the lattice planes. A stop gap is also formed when
Bragg diffraction occurs on multiple Bragg planes simul-
taneously, which is called multiple Bragg diffraction [10],
and is fundamental for band gap formation [2,11,12]. Wave
propagation in crystals is described along high-symmetry
directions [1]. Multiple Bragg diffraction has been
recognized in high-symmetry directions at frequencies
above the first-order simple Bragg-diffraction condition:

m ¼ 1, � ¼ 2d, or ~kout ¼ � ~kin ¼ 1
2
~g. To our knowledge,

multiple Bragg diffraction has not yet been observed at
frequencies below simple Bragg diffraction [13].
In this Letter we show that for high-symmetry directions

multiple Bragg diffraction can occur at frequencies below
the first-order simple Bragg condition. As a demonstration,
we have investigated diffraction conditions for two-
dimensional (2D) photonic crystals using reflectance spec-
troscopy. A broad stop gap is observed below the simple
Bragg condition, depending on the symmetry of the lattice.
Our findings are not limited to light propagation, but apply
for wave propagation in general, and therefore we antici-
pate similar diffraction for electrons in graphene [5], and
sound in phononic crystals [6,7].
We have studied light propagation in 2D silicon pho-

tonic crystals [16]. Figure 1(a) shows a scanning electron
microscope image of one of these crystals from the top
view. The centered rectangular unit cell has a long side
a ¼ 693� 10 nm and a short side c ¼ 488� 11 nm. The
pores have a radius of r ¼ 155� 10 nm and are approxi-
mately 6 �m deep. The photonic crystals are cleaved
parallel to either the a side or c side of the unit cell.
The cleavages define two directions of high symmetry,
�M0 and �K, in the Brillouin zone, see Fig. 1(b). If light
travels parallel to these directions, one expects simple
Bragg diffraction from the lattice planes in real space
[dashed lines in Fig. 1(a)]. A stop gap should appear that
is seen in reflectivity as a diffraction peak. Because both
directions are of high symmetry, one naively expects sim-
ple Bragg diffraction to give the lowest-frequency diffrac-
tion peak.
We have identified the diffraction conditions of our 2D

photonic crystals along the �M0 and �K directions using
reflectance spectroscopy [17]. The photonic crystals are
illuminated with a supercontinuum white light source
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(Fianium SC-450-2). TE-polarized light is focused on the
crystal using a gold-coated reflecting objective (Ealing
X74) with a numerical aperture of 0.65, resulting in a
spectrum angle-averaged over 0:44�� 10% sr solid angle
in air. By assuming an average refractive index (n ¼ 2:6),
the angular spread inside the crystal is only 14�, corre-
sponding to 0:06�� 10% sr solid angle. The diameter of
the focused beam is estimated to be 2w0 ¼ 1 �m.
Reflected light is collected by the same objective, and the
polarization is analyzed. The spectrum is resolved using
Fourier transform infrared spectroscopy (BioRad FTS-
6000) with an external InAs photodiode. The spectral
resolution was 15 cm�1, corresponding to about 10�3

relative resolution. For calibration, spectra are normalized
to the reflectance spectra of a gold mirror.

Figure 2(a) shows the band structure calculated using a
plane wave expansion method [18] and reflectivity mea-
sured along the �M0 direction (black solid line). The broad
lowest-frequency measured reflectivity peak between 4700
and 7300 cm�1 agrees well with the calculated stop gap.
This reflectivity peak is caused by simple Bragg diffraction
on the lattice planes indicated in the cartoon above, corre-
sponding to the vertical lattice planes in Fig. 1(a). One can
also approximate the lowest-frequency simple Bragg-
diffraction condition from the dispersion with a constant
effective refractive index (neff), obtained from the low-
frequency limit [19]. This estimation is marked by the
dashed vertical line and agrees well with the calculated
stop gap. The two measured peaks between 9800 and
11 100 cm�1 agree well with a higher-frequency stop gap
marked by a second blue area, caused by multiple Bragg

diffraction. The peaks appear at higher frequency than
simple Bragg diffraction, as expected. The reflectivity of
an incident plane wave on a finite size structure has been
simulated with finite difference time domain (FDTD)

(a)

(b)

FIG. 2 (color online). Measured (black, solid line) and simu-
lated (grey, dashed line) reflectivity spectra, and calculated band
structures for TE-polarized light of a 2D photonic crystal along
directions of high symmetry. (a) The measured and simulated
lowest-frequency diffraction peaks in the �M0 direction match a
calculated stop gap that occurs at the simple Bragg-diffraction
condition. (b) The measured and simulated lowest-frequency
diffraction peaks in the �K direction match a calculated stop
gap and is caused by multiple Bragg diffraction that occurs at a
lower frequency than simple Bragg diffraction.

FIG. 1 (color online). (a) Scanning electron microscope image
of a 2D photonic crystal with a centered rectangular lattice. The
white rectangle marks a unit cell with a ¼ 693� 10 nm, c ¼
488� 11 nm, and r ¼ 155� 10 nm. The arrows mark two
directions of high symmetry �K and �M0. The dashed lines
mark real space lattice planes whose lowest-frequency simple
Bragg diffraction occurs along the �K and �M0 directions.
(b) Reciprocal space of the centered rectangular lattice (circles).
The filled area is the first Brillouin zone, b1 and b2 are primitive
vectors. �, K, K0, M, and M0 are points of high symmetry. The
dashed lines are Bragg planes.
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simulations [20] (grey, dashed line). The agreement be-
tween the simulated and measured reflectivity is gratifying.

In Fig. 2(b) we show the calculated band structure and
measured reflectivity along the �B direction, where K is
located on the edge of the Brillouin zone and B is located
on the Bragg plane between � and reciprocal lattice vector
G11. Two significant broad measured reflectivity peaks are
visible. The lowest-frequency peak between 5400 and
6900 cm�1 agrees well with a calculated stop gap marked
by the yellow area. This peak is caused by multiple Bragg
diffraction on the lattice planes indicated in the cartoon
above the calculated stop gap, and is part of the two-
dimensional band gap for TE-polarized light. The second
reflectivity peak between 8100 and 10 000 cm�1 agrees
with a second calculated stop gap (blue area). The flat
bands in the dispersion relation, causing an impedance
mismatch of coupling light into the crystal [9,21], likely
broaden the observed peak (hatched area). This is sup-
ported by FDTD simulations of the reflectivity of an inci-
dent plane wave on a finite size structure (grey, dashed
line). The agreement between the simulated and measured
reflectivity peak is gratifying. The measured peak is proba-
bly rounded off as a result of the high numerical-aperture
microscope objective. Note that band structure calculations
and FDTD simulations neglect the dispersion of silicon.
Scattering from surface imperfections becomes more
important at higher frequencies, which could explain why
the measured reflectivity peak is much lower near
10 000 cm�1. At any rate, the frequency ranges of the
measured and simulated peaks agree very well.

This second stop gap is caused by simple Bragg diffrac-
tion on the lattice planes indicated in the cartoon above the
calculated stop gap, corresponding to the horizontal lattice
planes in Fig. 1(a). The frequency of the simple Bragg-
diffraction condition based on an neff is inaccurate because
a broad stop gap is already present at lower frequencies.
The observation of a prominent diffraction peak caused by
multiple Bragg diffraction at a much lower frequency than
simple Bragg diffraction is important. This result shows
that even for high-symmetry directions such as the �K
direction, there can be a diffraction condition below
simple Bragg diffraction, which we address as sub-Bragg
diffraction [22].

We have performed reflectivity measurements on pho-
tonic crystals with a range of r

a . Figure 3 shows the width of

the diffraction peaks for the �M0 (a) and �K directions ðbÞ.
The areas correspond with calculated stop gaps, such as in
Fig. 2. The dash-dotted line is the approximated frequency
of lowest-frequency simple Bragg diffraction assuming a
constant neff . Note the very good agreement between the
measured frequencies of the diffraction peaks and the
calculated stop gaps. We observe for the �K direction
diffraction always appearing at a lower frequency than
simple Bragg diffraction. This observation confirms the
robustness of sub-Bragg diffraction [23].

The existence of sub-Bragg diffraction can be explained
by considering the lattice in reciprocal space, see Fig. 1(b).
For the �K direction we observe in reciprocal space two
points of high symmetry: K and B. K is located on the
Brillouin zone boundary, at the intersection of two Bragg
planes corresponding to the von Laue conditions between
� andG10, � andG11. Thus, atK we have a multiple Bragg
diffraction condition on both Bragg planes. B is located at
the Bragg plane (dashed line) that satisfies the von Laue
condition between � ¼ G00 and G11 resulting in simple
Bragg diffraction. Since B is located outside the Brillouin
zone, the simple Bragg condition occurs at higher fre-
quency than the sub-Bragg condition. From this figure
we describe three conditions for sub-Bragg diffraction:
(i) The diffraction condition corresponds to a point on a
corner edge of the Brillouin zone, giving rise to multiple
Bragg diffraction; (ii) the incident wave vector should be
along a high-symmetry direction, which is satisfied by
considering only reciprocal lattice vectors Gkhl, for which
jhj, jkj, jlj � 1, or equivalent; (iii) sub-Bragg diffraction
can only occur at a lower frequency than the simple Bragg-
diffraction condition.
Using these three conditions, it becomes evident that

diffraction conditions for M and M0 correspond to simple
Bragg diffraction for G10 and G11 respectively. K

0 satisfies
criteria (i) and (iii); however, it does not satisfy criterion
(ii). This diffraction condition belongs to multiple Bragg
diffraction in a direction of lower symmetry, similar to the
observation in Ref. [11]. Therefore, sub-Bragg diffraction
is only observed at K. In this case we have measured the
reflectivity of photonic crystals that strongly interact with
light. For our crystals, we find that for r

a > 0:07 a stop gap

opens at K, and for r
a � 0:07 flat dispersion bands appear.

Up to now we have considered a centered rectangular

lattice with long side a, short side c, and a
c ¼

ffiffiffi

2
p

. However,

sub-Bragg diffraction can be expected for any a
c > 1 [24].

To illustrate this we have made an analytical model to
explain the sub-Bragg-diffraction frequency. We calculate

FIG. 3 (color online). Determined reduced width of the dif-
fraction peaks (bars) and frequency of the maximum reflectivity
(circles) for different r

a . The filled areas are calculated stop gaps,

color coded as in Fig. 2. (a) Reduced frequency of the diffraction
peaks for the �M0 direction. (b) Reduced frequency of the
diffraction peaks for the �K direction.
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j�Kj and j�Bj as a function of a
c , where the frequency of

the sub-Bragg condition is proportional to c0
neff

j�Kj and the

frequency of the simple Bragg condition is proportional to
c0
neff

j�Bj, where c0 is the vacuum velocity. The results are

shown in Fig. 4. When a
c ! 1, sub-Bragg diffraction oc-

curs at j�Kj
j�Bj ¼ 1

2 . Inset 1 shows the reciprocal lattice for
a
c ¼ 1, corresponding to the square lattice. In this case,

j�Kj ¼ j�Bj and therefore sub-Bragg diffraction and sim-
ple Bragg diffraction occur at the same frequency, violat-
ing condition (iii). Inset 2 shows the reciprocal lattice for
a
c ¼

ffiffiffi

2
p

, corresponding to the experimental conditions of

the structures investigated by us. Inset 3 shows the recip-

rocal lattice for a
c ¼

ffiffiffi

3
p

, corresponding to the triangular

lattice. All three conditions for sub-Bragg diffraction at K
are fulfilled. There is also a sub-Bragg-diffraction condi-
tion for K0. It may seem that condition (ii) is violated
because the �K0 direction corresponds to G21. However,

because of the rotational symmetry of the Brillouin zone,
K ¼ K0 and the diffraction conditions in the G21 direction

are identical to the G11 direction, and therefore condition
(ii) is satisfied. In a similar experiment performed by [25],
a diffraction peak was observed at K. However, these
excellent experiments were compared with band structures
between �K, since it was not recognized that there is also a
diffraction condition at B. For the centered rectangular

lattice, one must calculate band structures between �B to
accurately estimate the width of the stop gaps. This is
evident from the band structures in Fig. 2(b) by comparing
the width of the stop gaps when one would consider only
�K instead of �B.
In the case of three-dimensional (3D) crystals, if a

Bravais lattice has a planar cross section that can be
described by a centered rectangular lattice along a direc-
tion of high symmetry, sub-Bragg diffraction will occur.
For 2D Bravais lattices sub-Bragg diffraction can occur for
2 out of 5 Bravais lattices: centered rectangular or trian-
gular (which is a special case of centered rectangular),
see Fig. 4. There are 7 out of 14 3D Bravais lattices that
have a planar cross section that can be described by a
centered rectangular lattice in a direction of high symme-
try: body-centered cubic, body-centered tetragonal,
base-centered orthorhombic, body-centered orthorhombic,
face-centered orthorhombic, base-centered monoclinic and
hexagonal. We predict that sub-Bragg diffraction can occur
for these 7 Bravais lattices.
Sub-Bragg diffraction is valid for any kind of wave

propagation in structures that fulfill the symmetry condi-
tions. Therefore we predict that for x-ray spectroscopy on
crystals a sub-Bragg-diffraction peak can be observed. As
multiple Bragg diffraction is required for photonic band
gap formation, hence sub-Bragg diffraction can affect band
gap formation [14]. Indeed, the sub-Bragg-diffraction con-
dition is part of the 2D TE-band gap in triangular lattices
[9]. For elastic wave diffraction a propagation gap is
formed at the sub-Bragg condition and therefore also for
phonons and for relativistic electrons, such as the case of
graphene, which has a triangular lattice.
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