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Exact Wave Functions of Two-Electron Quantum Rings
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We demonstrate that the Schrodinger equation for two electrons on a ring, which is the usual paradigm
to model quantum rings, is solvable in closed form for particular values of the radius. We show that both
polynomial and irrational solutions can be found for any value of the angular momentum and that the
singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the
nodal structure associated with these two-electron states.
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Introduction.—Like quantum dots [1], quantum rings
(QR) are self-organized nanometric semiconductors and
are intensively studied experimentally due to their rich
electronic, magnetic, and optical properties [2—7], such
as the Aharonov-Bohm effect [8—10].

Many-electron QRs have been investigated theoreti-
cally using various methods, such as model Hamiltonian
[11-13], exact diagonalization [14,15], quantum
Monte Carlo calculations [15,16], and density-functional
theory [17-20]. Accurate numerical calculations on
two-electron QRs have been reported in Ref. [21].

Quantum rings are usually modeled by electrons con-
fined to a strict- or quasi-one-dimensional circular space
interacting via a short-ranged or Coulomb operator. In this
Letter, we focus on the simple system in which two elec-
trons are confined to a ring of radius R and interact via a
Coulomb operator. This choice has often been avoided in
the literature due to the divergence of the Coulomb inter-
action at small interelectronic distances.

Contrary to frequent claims, systems with two electrons
do not inevitably have intractable Schrodinger equations,
and we show here that, for each electronic state of a two-
electron QR, the Schrodinger equation can be solved ex-
actly for a countably infinite set of R values, yielding both
polynomial and irrational solutions in terms of the inter-
electronic distance. Quantum mechanical systems whose
Schrodinger equations can be solved in this way, such as
Hooke’s law [22] or spherium [23,24] atoms, have ongoing
value both for illuminating more complicated systems
[25,26] and for testing and developing theoretical ap-
proaches, such as density-functional theory [27-30] and
explicitly correlated methods [31].

In atomic units (A = m = ¢ = 1), the Hamiltonian of
two electrons on a ring of radius R is

| 1
:E(P% +p3) +;, (1
where p;, = (i/R)d/d6, is the momentum operator asso-
ciated with the electron k and 6 is its angle around the ring

center. The operator u~! represents the Coulomb interac-
tion between the electrons, where
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u = Ry2 — 2cos(6; — 6,) )

is the interelectronic distance [32]. In one dimension, the
singlet and triplet manifolds are degenerate [33], and this
allows us to focus primarily on the singlets.

Hartree-Fock solution.—Within the Hartree-Fock (HF)
approximation [35], the ground-state wave function is
simply

Wyp(u) = u, (3)
which has a node at u = 0, and the energy is
1 2
TR S @

Exact solution.—In terms of the extracule coordinate
QO = (6, + 6,)/2 and intracule coordinate w = 6, — 6,
[36], the Hamiltonian (1) is H = H¢, + H,,, where
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The exact spatial wave function is then the product

P(Q, w) = AQ)¥(w), @)

(6)

and the exact total energy is the sum E = &£ + € of the
extracular and intracular energies.
The eigenfunctions and eigenvalues of H, are
JZ
A(Q) = exp(iJQ), & =, ®)
4R
where J € N is the total angular momentum associated
with the center-of-mass coordinate [37].
The eigenfunctions of H , satisfy

~ Vw) N V(w)
R? R~/2 — 2cosw

and are all doubly degenerate. Each pair of solutions con-
sists of a singlet (S = 0) and a triplet (S = 1) state with

= e¥(w) ()]
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opposite Berry [38] (or geometric [39]) phase behavior
(Table I). Specifically, if one of the electrons passes once
around the ring, the wave function is unaffected in states
where J + § is even but changes sign in states where J + §
is odd. Two-electron QRs are probably one of the simplest
systems that exhibit the Berry phase phenomenon.

In terms of u, Eq. (9) is the Heun-like equation [40,41]

‘I’(u)

MZ
(——1)‘1’”(14)+ SW () + —— = eW(w), (10)

4R?
with singular points at —2R, 0, and 2R. A Kato-like
analysis [42] of (10) yields
\Ij//(o)
w'(0)

which shows that, like Wy, W has a node at u = 0 and
behaves as

W(0) =0, =1, Y

V(u) = u(l + g) + 0(ud) (12)

for small u.
The general solution of (10) is [41]

a2 u \b/2
(a,b) = + — (a,b)
Plab)(y) = u(l ZR) <1 2R> PP (u),  (13)

where a, b = 0 or 1 and P“?) is a regular power series

P@l(u) = 3 P uk. (14)
k=0

This produces four families of solutions characterized by
the ordered pair (a, b). Substitution of (13) into (10) yields
the three-term recurrence relation

cab) 1 {[(k +t2)(b—a) I]C(a,b)
k2 (k+2)(k+3) 2R kel
(a,b)
N [k(k +2+a +2b) + ol o-w»b)e]cﬁf"’)}, (15)
4R
with the starting values
(@b) _ @b _ 1 b—a
e’ =1, i’ —5<1 + 7R ) (16)
and
TABLE I. Term symbols for two electrons on a ring.

Geometric phases are indicated by the sign at the bottom-left
of each symbol. A — sign means that the wave function changes
sign when one of the electrons rotates once around the ring.

Spin manifold Angular momentum J

0 1 2 3 4
Singlet L3 LI LA L LT
Triplet SR || A 30 3T

o0 = 1. 17)
o0 = O — | 4+ 5/(4 — 16R%e), (18)
o) =1+ 3/(1 — 4R%e). (19)

The (0, 0) and (1, 0) families contain ground-state and
excited-state wave functions with an odd number of nodes,
while the (0, 1) and (1, 1) families (which have a node at
u = 2R) yield excited-state wave functions with an even
number of nodes.

Closed-form solutions.—For particular values of R,
closed-form solutions can be found. The series (14) re-
duces to the nth-degree polynomial

n
(a.b) .\ — (a,b)
Pin (0 = 3, et (20)
if, and only if, ¢\“?) = %) = 0. The energy 6(“’b) is a root

(a.b

of the polynomial equation ¢, "] = 0, and the correspond-

ing radius Rﬁf’n ) is found from (15) to satisfy
40D P (RUEPY = n(n + 2+ a + b) + 0@, (21)

\I’Ef‘,;b) is an exact intracular wave function with j nodes.

Each (a, b) family contains an infinite number of solu-
tions, associated with distinct values of R (Fig. 1). Both
ground-state and excited-state wave functions can be ob-
tained, and they are easily characterized by the number j of
nodes (Table II). The (0, 0) family contains polynomial
solutions, while the three other families contain irrational
solutions. All behave as in (12) for small u.

The nodal patterns of the ground state (i.e., single node
at u = 0) and first excited state (nodes at u = 0 and 2R) are
trivial [43], but those of the higher excited states are more
complicated and depend on the value of R (Fig. 2).

(a,b)
R i (a.u.)

FIG. 1 (color online). Energies e " of the lowest J = 0 states
of two-electron quantum rings as a functlon of the radius R; (a. b)
Closed-form solutions in the (0,0), (1,0), (0,1), and (1,1) famllles
are shown by blue dots, red squares, yellow diamonds, and green
triangles, respectively. The small-R approximation of Eq. (22)
(red dashed line) and large-R approximation of Eq. (23) (purple
dotted line) are also shown.
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TABLE II. Closed-form solutions for the ground and first excited states of two electrons on a
ring.

j n (a, b) P () R el

1 0 (1,0) 1 1/2 9/4

1 1 (0,0) 1+u/2 3/2 2/3

1 1 (1,0) 1+ (15 — /33)u/24 3(7 + /33)/8 25(7 — /33)/96
1 2 (0,0) 1+ u/2+5u2/92 23/2 9/46

2 1 (0,1) 1+ (15 + /33)u/24 3(7 —/33)/8 25(7 + /33)/96
2 1 (1,1 1+u/2 J3/2 4/5

2 2 (1,1 1+ u/2 + 7u?/132 J33/2 5/22

Taking (3) as a zeroth-order wave function, one can use
standard perturbation theory methods [44] to show that the
small-R (weak correlation) expansion of the ground-state
(j = 1) energy is

0.026 424 + 0.007 241R — 0.001 966R>
+0.000492R3 + - - -, (22)

€ = €yfF —

which gives good agreement with the first four values of
R.(]-fl,’,b) (Fig. 1). At the other extreme, the large-R (strong
correlation) expansion is [45]

1 1 5

"R 4R ear? (23)

Figure 1 reveals that Eq. (23) is accurate over a much wider
range of R values than Eq. (22), as one might expect in
such a strongly correlated one-dimensional system.
Conclusion.—In this Letter, we have shown that the
Schrodinger equation for two electrons on a ring is solv-
able in closed form for a countably infinite number of R
values. We have demonstrated that, for each value of the
angular momentum J, one is able to obtain polynomial and
irrational solutions for both the singlet and triplet mani-
folds. The latter are degenerate but exhibit different geo-
metric (Berry) phase behavior. Although we are not aware
of any physical significance for these special values of the
radius, they yield exact wave functions in both the weakly
and strongly correlated regimes. This makes the present

GG,

a) j =1 and (a,b) = (0,0) (b) j =1 and (a,b) =

(1,0) (c) j =2 and (a,b)

d) j =2 and (a,b) = (1,1)

®O®®

(e) j =3 and (a,b) = (0,0) (f) j =3 and (a,b) =

g) j =4 and (a,b) = (0,1) (h) j =4 and (a,b) = (1,1)

(i) j =5 and (a,b) =

FIG. 2 (color online).
lines indicate the position of the noninteracting nodes.

(0,0) () j=>5and (a,b) = (1,0) (k) j =6 and (a,b) =

(0,1) () j=6and (a,b) = (1,1)

Node positions of closed-form solutions for the ground and excited states of two electrons on a ring. The black
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system particularly valuable for testing approximate meth-
ods in different correlation regimes. Following the ap-
proach developed in this Letter, analytical solutions for
other interaction potentials can also be found.
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