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We introduce a spin chain based on finite-dimensional spin-1=2 SU(2) representations but with a non-

Hermitian ‘‘Hamiltonian’’ and show, using mostly analytical techniques, that it is described at low

energies by the SLð2; RÞ=Uð1Þ Euclidian black hole conformal field theory. This identification goes

beyond the appearance of a noncompact spectrum; we are also able to determine the density of states, and

show that it agrees with the formulas in [J. Maldacena, H. Ooguri, and J. Son, J. Math. Phys. (N.Y.) 42,

2961 (2001)] and [A. Hanany, N. Prezas, and J. Troost, J. High Energy Phys. 04 (2002) 014], hence

providing a direct ‘‘physical measurement’’ of the associated reflection amplitude.
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Introduction.—The profound relation between quantum
spin chains and quantum field theories (QFTs) is central to
modern theoretical physics. Its simplest aspect is that the
low-energy excitations of a chain are described by a QFT in
the continuum limit. Conversely, some difficult, strongly
interacting QFTs can be tackled using appropriate (usually
antiferromagnetic) spin chains, for which a large variety of
methods—including numerical—are available. The nu-
merous success stories using this approach include under-
standing the � term in the Oð3Þ sigma model [1], and
developing bosonization techniques from the concept of
Luttinger liquid [2].

The above examples all involve spin chains built with
finite-dimensional representations, and their continuum
limits are QFTs with a compact target. But many current
problems of physics are concerned with strongly curved,
noncompact targets. For instance, the conformal field the-
ory (CFT) describing the transition between plateaux in the
two-dimensional (2D) integer quantum Hall effect (IQHE)
is expected to be the low-energy limit of the noncompact
2D super sigma model on Uð1; 1j2Þ=½Uð1j1Þ � Uð1j1Þ� at
� ¼ �. Also, the dual of N ¼ 4 SUSY gauge theory in
4D is closely related with a 2D sigma model on
PSUð2; 2j4Þ=½SOð4; 1Þ � SOð5Þ� [3]. While it seems ex-
tremely hard to solve these sigma models directly, one
might hope that spin chain regularizations provide access
to some of their properties. A priori, these chains should
involve infinite-dimensional representations. In the IQHE
such a chain indeed arises in the very anisotropic limit of
the Chalker-Coddington network model, and involves al-
ternating highest and lowest weight representations of
pslð2j2Þ [4].

Unfortunately, the technical difficulties encountered in
the analysis of these infinite-dimensional spin chains are
considerable. While numerical methods based on Hilbert

space truncations are possible [5], analytical approaches
have stalled. Despite much work on different aspects of the
Bethe ansatz (BA) in this case [6,7], it is not even known
whether the antiferromagnetic noncompact XXX spin
chains are gapless—nor to what extent analyses based on
coherent state representations and analogies with the com-
pact case [8] make sense.
In this Letter we show how to construct a solvable,

finite-dimensional, antiferromagnetic spin chain whose
low-energy physics is described nevertheless by a non-
compact CFT. This is obviously important progress, since
the usual BA techniques can then be used, without insur-
mountable difficulties, to understand noncompact CFTs.
We illustrate this discovery with the SLð2;RÞ=Uð1Þ

sigma model, a gauged Wess-Zumino-Witten (WZW)
model originally introduced in the context of black holes
in string theory [9] and later intensively studied for its CFT
features as well [10–15]. While it is tempting to assume
that it [or the SLð2;RÞWZWmodel] is the continuum limit
of a spin chain based on infinite-dimensional representa-
tions of SLð2;RÞ or SLð2;CÞ, this connection remains
presently entirely speculative. In contrast, we here show
how all the known features of the SLð2;RÞ=Uð1Þ sigma
model, including the noncompact spectrum and the highly
nontrivial density of states, are obtainable starting from a
rather modest-looking spin chain, one of whose aspects,
however, is non-Hermiticity.
The spin chain.—The starting point is a Z2 staggered

model, which was introduced in relation with the antifer-
romagnetic Potts model [16–18]. It is a variant of the six-
vertex model but with alternating spectral parameters
(u; uþ �

2 ; . . . ; u; uþ �
2 ) and (0; �2 ; . . . ; 0;

�
2 ) on the hori-

zontal and vertical lines of the square lattice, respectively.
Here, we use the Boltzmann weights: a ¼ sinð�� uÞ, b ¼
sinu, c ¼ sin�, in Baxter’s notations [19], encoded in the
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matrixRijðuÞ, and we restrict to the regime 0< �< �
2 . The

one-row transfer matrix with periodic boundary condi-
tions, for a system of width 2L, is

tðuÞ :¼ Tr0R0;2Lð �uÞR0;2L�1ðuÞ . . .R02ð �uÞR01ðuÞ;
where �u :¼ u� �=2. For simplicity, we suppose L is even.
In the very anisotropic limit u ! 0, the equivalent quantum
Hamiltonian is

H :¼ 1

2
sin2�

�
t�1ð0Þt0ð0Þ þ t�1

�
�

2

�
t0
�
�

2

��
; (1)

where the prime denotes differentiation with respect to u.
In terms of Pauli matrices,

H ¼ X2L
j¼1

�
� 1

2
�j � �jþ2 þ sin2��z

j�
z
jþ1 �

1

2
cos2�1

þ i sin�ð�z
j�1 � �z

jþ2Þð�þ
j �

�
jþ1 þ ��

j �
þ
jþ1Þ

�
: (2)

The parameter � defines the quantum algebra UqðS‘2Þ for
the Rmatrix, through the relation q ¼ ei�. Like in the open
XXZ chain, this makes H non-Hermitian. However, the
low-lying states we study here all have real energies.
Among the conserved quantities of H, one has (i) the Z2

charge C :¼ Q
L
j¼1 c2j�1;2j, (ii) the total magnetization

M :¼ 1
2

P
2L
j¼1 �

z
j, and (iii) the ‘‘quasimomentum’’ S :¼

��2�
4�� log½tð0Þt�1ð�2Þ�, which reads

S ¼ �� 2�

4��
log

�YL
j¼1

c2j;2jþ1

YL
j¼1

c2j�1;2j

�
: (3)

We have defined cij ¼ PijRijð��=2Þ= cos�, and Pij

permutes the spins i and j. The three above operators
commute with H by the Yang-Baxter equations and the
six-vertex ‘‘ice rule.’’ Below we derive the low-energy
spectrum of (2), and establish a dictionary between the
above conserved quantities and those of the SLð2;RÞ=Uð1Þ
sigma model.

Low-energy spectrum from the Bethe ansatz.—The
model (2) is solvable by the Bethe ansatz, and the low-
energy states correspond to two sets of real roots f�jgj¼1...r0

and f�jgj¼1...r1 . The BA equations read [20]

�
coshð�j � i�Þ
coshð�j þ i�Þ

�
L ¼ �Yr0

‘¼1

sinh12 ð�j � �‘ � 2i�Þ
sinh12 ð�j � �‘ þ 2i�Þ

� Yr1
‘¼1

cosh12 ð�j ��‘ � 2i�Þ
cosh12 ð�j ��‘ þ 2i�Þ ; (4)

�
coshð�j � i�Þ
coshð�j þ i�Þ

�
L ¼ �Yr0

‘¼1

cosh12 ð�j � �‘ � 2i�Þ
cosh12 ð�j � �‘ þ 2i�Þ

� Yr1
‘¼1

sinh12 ð�j ��‘ � 2i�Þ
sinh12 ð�j ��‘ þ 2i�Þ ; (5)

and the corresponding energy and momentum are

E ¼ �Xr0
j¼1

2sin22�

cosh2�j þ cos2�
� Xr1

j¼1

2sin22�

cosh2�j þ cos2�
;

p ¼ �i
Xr0
j¼1

log
coshð�j � i�Þ
coshð�j þ i�Þ � i

Xr1
j¼1

log
coshð�j � i�Þ
coshð�j þ i�Þ :

Bethe states are eigenstates of M and S, with eigenvalues

m ¼ L� r0 � r1; s ¼ Xr0
j¼1

sð�jÞ �
Xr1
j¼1

sð�jÞ;

where

sð�Þ :¼ �� 2�

4��
log

cosh�þ sin�

cosh�� sin�
:

The operator C exchanges f�jg and f�jg. Note that, when

f�jg ¼ f�jg, (4) and (5) reduce to the BA of an XXZmodel

with anisotropy � ¼ � cos�0, where �0 :¼ �� 2�.
In the limit r0 ¼ r1 ¼ L=2 ! 1, the roots that solve (4)

and (5) form a pair of continuous distributions (�0, �1),
defined respectively on the intervals [��0

0, �0] and

[��0
1, �1], and subject to two coupled linear integral

equations:

2��að�Þ þ
X

b¼0;1

Z þ�b

��0
b

d��bð�ÞKa�bð���Þ ¼ �ð�Þ;

(6)

where a 2 f0; 1g. It is convenient to define the kernels
Ka�b and the source term � through their Fourier trans-

form, with the convention f̂ð!Þ :¼ R
d�fð�Þei!�. One

has:

K̂ 0; K̂�1; �̂ ¼ � 2� sinh�0!
sinh�!

;
2� sinh2�!

sinh�!
;
2� sinh�!

sinh�!2
:

Like in the XXZ model, the ground state (gs) corresponds
to the limit �a ¼ �0

a ! 1 in (6), and the solution is
simply obtained by Fourier transform �0ð�Þ ¼ �1ð�Þ ¼
�gsð�Þ :¼ 1=ð2�0 cosh���0 Þ. The central charge obtained

from the scaling of the ground-state energy is c ¼ 2.
The elementary excitations over the ground state (spi-

nons) are holes in the root distributions �0, �1. Using
standard kernel methods [21,22], we get the dressed mag-
netic charge Z ¼ �=ð4�Þ and the energy and momentum
of a spinon of rapidity �:

	spð�Þ ¼ � � sin�0

�0 cosh���0
; pspð�Þ ¼ 2 arctan

�
tanh

��

2�0

�
:

The low-energy spinons (� ! 1) thus have a linear dis-

persion, with Fermi velocity vf ¼ � sin�0
�0 . Similarly, the

quasimomentum associated to a spinon is
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sspð�Þ ¼ ��� 2�

4��
log

�
cosh

��

�0

�
;

where the sign depends on which distribution (�0 or �1)
the spinon lives in. Since s / ðr1 � r0Þ for large L
[see (14)], this quantity measures the difference between
the two total root densities.

The main object of this Letter is the study of the con-
formal spectrum fðh; �hÞg through the finite-size behavior of
the energy gap and the momentum [23]:

�E ¼ E� Egs ’
2�vf

L
ðhþ �hÞ; p ’ 2�

L
ðh� �hÞ:

In analogy with the XXZ case [24], we assume that the
Bethe states which converge to primaries in the continuum
limit are combinations of a magnetic excitation (removal
of m0 roots f�jg and m1 roots f�jg) and an electric excita-

tion (global shift of the Bethe integers by an integer e):
such a state is then denoted �m0;m1;e. It is well known how

to extract conformal weights from the BA equations of a
gapless spin chain using Wiener-Hopf (WH) analysis [21].
Reproducing the standard calculation [22] leads immedi-
ately to the conformal weights for �m0;m1;e:

hþ �h ¼ m2

8½1þ Ĵ0ð0Þ�
þ 2½1þ Ĵ0ð0Þ�e2 þ ~m2

8½1þ Ĵ1ð0Þ�
;

(7)

where we introduced the symmetric and antisymmetric
magnetic charges m :¼ m0 þm1 and ~m :¼ m0 �m1, and
the inverse kernels

1þ Ĵrð!Þ :¼ 2�

2�þ K̂0ð!Þ þ ð�1ÞrK̂1ð!Þ : (8)

However, the particular feature of the Z2 staggered model

is that the kernel (1þ Ĵ1) has a double pole at ! ¼ 0. This
means that, for finite ~m, the third term in (7) vanishes
identically, suggesting an infinitely degenerate ground
state in the thermodynamic limit, or, more accurately, a
continuous spectrum of exponents [18]. To establish this,
more analysis is obviously needed [25].

We now show how to handle this problem, emphasizing
the main differences from [21,22]. Starting from (6), our
strategy consists in expanding m, s, ~m, and �E in terms of

the small parameters 
a :¼ e���a=�
0
and then (as in [21])

eliminating the 
a’s from the equations, to get�E and ~m as
functions of (m, s, L). The finite-size effects on �E then
yield the conformal weights, whereas the constraint ~m 2 Z
determines the density of states.

We restrict for simplicity to a purely magnetic state
�m0;m1;0, for which the �a’s are even functions. Defining

the combinations �
r
:¼ �0 þ ð�1Þr�1, we may rewrite

(6) as a pair of coupled WH equations:

� rð�Þ þ
X

a¼0;1

ð�1Þar
Z 1

�a

�að�ÞJrð���Þd�

¼ 2�r;0�gsð�Þ: (9)

We write the WH decomposition of the kernels as 1þ
Ĵrð!Þ ¼ ½Ĝþ

r ð!ÞĜ�
r ð!Þ��1, where Ĝþ

r (Ĝ�
r ) is analytic

and nonzero in the upper (lower) half-plane. This is
given by

Ĝþ
0 ð!Þ ¼

ffiffiffiffiffiffi
4�

p
�ð1� i!

2 Þ
�ð1� i�!

� Þ�ð12 � i�0!
2� Þ ;

Ĝþ
1 ð!Þ ¼

ffiffiffiffiffiffi
��0
�

q
i!�ð12 � i!

2 Þ
�ð1� i�!

� Þ�ð1� i�0!
2� Þ

(10)

and Ĝ�
r ð!Þ :¼ Ĝþ

r ð�!Þ. We define the shifted densities
gþa ð�Þ :¼ �að�þ�aÞ�ð�Þ, where � stands for
Heaviside’s step function. The solution of (9) can be
expanded on the poles f!0; !1; . . .g of �̂gs in the lower

half-plane, and the leading order is

ĝþ
a ð!Þ ’ C

!�!0

X
b¼0;1

ei!ð�b��aÞĜþ
a�bð!Þ
b; (11)

where Ĝþ
a�b :¼ 1

2 ½Ĝþ
0 þ ð�1Þa�bĜþ

1 �, !0 :¼ �i�=�0 and
C :¼ Ĝ�

0 ð!0ÞResð�̂gs; !0Þ. Following [21], we get:

m

L
’ �2Cð
0 þ 
1Þ

!0Ĝ
�
0 ð0Þ

;
�E

L
’ 2�vf

C2

!2
0

ð
2
0 þ 
2

1Þ: (12)

The derivation of ~m and s is more involved, due to the

singularity of Ĵ1. From (6), we have

~m

L
¼ lim

!!0

P
a¼0;1

ð�1Þa½ei!�a ĝþa ð!Þ þ e�i!�a ĝþa ð�!Þ�
Ĝþ

1 ð!ÞĜ�
1 ð!Þ ;

s

L
¼ � X

a¼0;1

ð�1Þa
�

Z
d!ŝspð!Þĝþa ð!Þei!�a :

Inserting the WH solution (11) yields

~m ’ 2iCð�0
0��1
1ÞL
!0ðĜ�

1 Þ0ð0Þ
; s ’ �02Cð
0�
1ÞL

2�ðĜ�
1 Þ0ð0Þ

: (13)

Consider the regime where m and s are finite. Equations
(12) and (13) then give the scaling of 
0 and 
1:


0; 
1 / 1

L
; ð
0 � 
1Þ / 1

L
:

Eliminating these variables from Eqs. (12) and (13), we
obtain

~m ’ 4s

�

�
log

L

L0

þ Bð�;m; e; sÞ
�
; (14)
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�E ’ 2�vf

L

�
�m2

2�
þ 2�s2

�� 2�

�
: (15)

In Eqs. (14) and (15) (derived here for e ¼ 0), L0 is a cutoff
depending only on �, and B is a correction term which we
discuss below. More generally, for e � 0, a similar deriva-
tion yields

�E ’ 2�vf

L

�
�m2

2�
þ �e2

2�
þ 2�s2

�� 2�

�
; p ¼ 2�em

L
;

and hence

h ¼ ðmþ ekÞ2
4k

þ s2

k� 2
; �h ¼ ðm� ekÞ2

4k
þ s2

k� 2
;

(16)

where ðm; eÞ 2 Z2, s 2 R, and we have set k :¼ �=�.
Since s is real, this is a noncompact spectrum.

Relation to the sigma model.—Recall now that, while the
SLð2;RÞ=Uð1Þ black hole (BH) model has a central charge
cBH ¼ 2ðkþ 1Þ=ðk� 2Þ, the identity field in that theory is
associated with a non-normalizable state. In fact, normal-
izable states arise mostly from continuous representations,
and have conformal weights as in (16), but with the second
term s2=ðk� 2Þ replaced by a WZW-type term �jðjþ
1Þ=ðk� 2Þ, with j ¼ � 1

2 þ is. The ‘‘bottom’’ of the spec-

trum thus occurs at h0 :¼ 1=½4ðk� 2Þ�, leading to an
effective central charge c ¼ cBH � 24h0 ¼ 2 as in our
lattice model. The spectrum (16) is thus formally identical
with the SLð2;RÞ=Uð1Þ one [11,15].

Since, in the large-L limit, s becomes a real parameter,
the spectrum (16) is a collection of continua over
the conformal weights of a compact boson. In the
SLð2;RÞ=Uð1Þ theory, this boson describes excitations
along the compact direction of the cigar (angular momen-
tum of rotations around the tip), whereas s is the angular
momentum along the axis of the cigar. We have expressed
in (3) the lattice operator S measuring this angular mo-
mentum. In finite size, since s ’ � ~m=ð4 logLÞ, the s2 terms
in (16) correspond to the magnetic charge of a boson with
effective compactification radius R / logL.

As in ordinary quantum mechanics, there is actually
little dynamical information in the spectrum (16) alone:
what is really needed is the density of states. This can also
be extracted from our finite-size calculation. Denoting
q ¼ expð2i��Þ the modular parameter, the partition func-
tion of our model on a torus reads, in the scaling limit,

Z ¼ ðq �qÞ�2=24

j�ð�Þj4
X

e2Z;mþ ~m22Z

qh �q
�h

¼ ðq �qÞ�2=24

j�ð�Þj4
X

e;m2Z2

Z þ1

�1
ds
ðsÞqh �q �h;

where � is the Dedekind eta function, and the density of
states is


ðsÞ ¼ 2

�

�
log

L

L0

þ @sðsBÞ
�
; (17)

where B was introduced in (14). The logarithmic diver-
gence with the IR cutoff is familiar in the sigma model
[15], whereas the finite part of 
ðsÞ is determined by
requiring ~m 2 Z in (14). Consider the purely magnetic
state �m0;m1;0. Our WH technique only gives access [26]

to the function B in the regime of large s and m, where we
get

Bð�;m; e ¼ 0; sÞ �
�� logs for s � m
� logm for s � m:

(18)

We believe it will eventually be possible to obtain more
complete results on B by a deeper analysis of the Bethe
ansatz equations. For now, in order to interpolate between
the above limiting behaviors,we computeB numerically, by
solving (4) and (5) at finite L: see results on Figs. 1 and 2.
The only adjustable parameter in these computations is L0,
which can be fixed, e.g., by imposing the value of B in the
ground state m ¼ e ¼ s ¼ 0. Slow convergence with the
system size is to be expected, because higher-order correc-
tions to Eq. (14) are of order 1= logL.
The finite part of the density of states 
ðsÞ in the

SLð2;RÞ=Uð1Þ sigma model was calculated in [10,11]
(see also [27]), and reads, in our parametrization,

BBHðsÞ ¼ 1

2s
Im log

�
�

�
1�mþ ek

2
� is

�

� �

�
1�m� ek

2
� is

��
: (19)

This function obeys the asymptotic behavior (18), and
numerical agreement with the finite part in our model is
good, as shown in Figs. 1 and 2. Moreover, we have
computed the values of (B� Bgs), where Bgs stands for

the ground-state value of B, in the limit s ! 0, to check
that L0 depends only on �: see Fig. 3.

FIG. 1 (color online). Finite part BðsÞ of the density of states
(17) for the continuum over the ground state of the Z2 model at
� ¼ �=5, compared to BBH.
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To conclude, we have identified the continuum limit of
our spin chain as the SLð2;RÞ=Uð1Þ black hole sigma
model CFT [28], with the level k 2�2;1½. Obviously,
this identification opens the way to much further develop-
ment. On the one hand, the spin chain can be used to better
understand the CFT structures, investigate issues such as
discrete states, conformal boundary conditions, etc.—it
will be particularly useful to study the so called Destri-
de Vega equations in this context [29]. On the other hand,
this example is not unique, since there exist [30,31] other
spin chains with finite representations and a noncompact
continuum limit. Hence, we plan, in particular, to study
sigma models with more complicated (super) targets (e.g.,
for the IQHE plateau theory) using this strategy.

Spin chains have also appeared from a different view-
point in the AdS/CFT conjecture [32]. It was discovered
that many physical quantities on the gauge theory side can
be related with the spectra of quantum spin chains [33].
These spectra in turn can be studied by techniques directly
addressing the low-energy excitations [34], or via the BA.

Recently, powerful machinery has been developed along
those lines to obtain results for the gauge theory at any
coupling [35]. It is tempting to conjecture that spin chains
such as ours might appear in this context as the ‘‘gauge
theory’’ side of some new interesting CFTs.
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chains and CFTs. The authors wish to thank C. Candu
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European Research Council (Grant No. CONFRA
228046).
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