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We investigate a two-component atomic Fermi gas with population imbalance in the presence of

Rashba-type spin-orbit coupling (SOC). As a competition between SOC and population imbalance, the

finite-temperature phase diagram reveals a large variety of new features, including the expanding of the

superfluid state regime and the shrinking of both the phase separation and the normal regimes. For

sufficiently strong SOC, the phase separation region disappears, giving way to the superfluid state. We find

that the tricritical point moves toward a regime of low temperature, high magnetic field, and high

polarization as the SOC increases.
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The recent experimental realization of a synthetic gauge
field [1] and spin-orbit coupling [2] opens a new arena to
explore quantum many-body systems of ultracold atoms.
The engineered spin-orbit coupling (SOC) (with equal
Rashba and Dresselhaus strength) in a neutral atomic
Bose-Einstein condensate was accomplished by dressing
two atomic spin states with a pair of lasers. The interaction
between a quantum particle’s spin and its momentum is
crucial for spin Hall effects [3] and topological insulators
[4], which has captured a great deal of attention in the
condensed matter community. The engineered SOC,
equally applicable for bosons and fermions, allows for
the realization of topological insulators and topologically
nontrivial states [5,6] in fermionic neutral atom systems,
engendering broad interest in the physics community.

In anticipation of immediate experimental relevance
involving SOC in fermionic atoms such as 6Li and 40K
[6], intense theoretical attention has been paid to the phys-
ics of the Bose-Einstein condensate-BCS crossover [7–11]
and polarized Fermi gases [12–14] in the presence of SOC.
The SOC has been predicted to lead to various new
phenomena. In particular, for the two-body problem, it
gives rise to a two-body bound state even on the BCS
side (as < 0) of a resonance [7]. For the many-body phys-
ics at mean-field level, it enhances BCS pairing via the
increased density of states at low energy and leads to
anisotropic superfluids through mixing of the spin singlet
and triplet components [7–10,15].

Polarized fermionic condensates have been the focus of
both theoretical and experimental research over the past
years [16]. Various possible asymmetric superfluid phases
have been proposed: for example, anisotropic or inhomo-
geneous superfluid states with crystalline structure (Fulde-
Ferrell-Larkin-Ovchinnikov) [17], deformed Fermi sur-
faces [18], a homogeneous gapless (breached pair) super-
fluid state [19], and phase separation into the normal Fermi
gases and fully paired superfluid state [20]. One of the key
questions to ask is how SOC reshapes our understanding of
these exciting systems. So far, most of the theoretical

studies [7–14] have focused mainly on zero temperature,
leaving the physics at finite temperature, which is experi-
mentally relevant, largely intact. In this Letter, we are
trying to address this question by conducting the following
studies: First, we map out the finite-temperature phase
diagram at the BCS side where mean-field theory gives
quantitatively reasonable results. By determining the be-
havior of the tricritical point as a function of SOC strength,
we can completely characterize the topology of the phase
diagram without recourse to an extensive numerical treat-
ment [21,22]. Second, we examine the physics at unitarity,
which is experimentally relevant and theoretically interest-
ing. Specifically, we consider the effect of SOC on the
‘‘spin susceptibility’’ and the critical temperature. Finally,
we investigate the fate of breached pairing states [19]
under SOC through the correlation functions.
We consider three-dimensional homogeneous two-

species polarized Fermi gases interacting via an attractive
contact potential with an isotropic in-plane Rashba spin-
orbit coupling, described by the following Hamiltonian,

H ¼
Z

d3r
X
�¼";#
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Here, HSO ¼ �
P

kk?½e�i’kc y
k"c k# þ H:c:�, with the

transverse momentum k? ¼ ðkx; kyÞ and ’k¼
Argðkxþ ikyÞ. The strength of spin-orbit coupling � can

be tuned by atom-laser interaction [2]. We define the
chemical potential � and the magnetic field h such that
�" ¼ �þ h and �# ¼ �� h. The spin imbalance be-

tween the two species is denoted by the polarization P ¼
ðn" � n#Þ=ðn" þ n#Þ. We consider pairing between different

hyperfine species of the same atom, so we restrict ourself to
a single mass m. The interaction strength g is expressed in
terms of the s-wave scattering length as by using the
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prescription m
4�as

¼ � 1
g þ 1

V

P
k

1
2�k

, where V is the volume

and �k ¼ k2=2m (for convenience, we set @ ¼ kB ¼ 1).

We also define the Fermi momentum by using kF ¼
ð3�2nÞ1=3, with total density n ¼ n" þ n#, so that the

Fermi velocity is vF ¼ kF=m. Throughout our calculation,
we will keep n fixed.

Within the framework of the imaginary-time field inte-
gral, the partition function of the system is Z ¼R
d½ �c ; c � expð�S½ �c ; c �Þ with the action S½ �c ; c � ¼R
d�½P�

�c �@�c � þHð �c ; c Þ�. Introducing a bosonic

field �ðr; �Þ, which is believed to encapsulate the relevant
low-energy degrees of freedom, we perform a Hubbard-
Stratonovich transformation, and then the action becomes

S¼R
d�½Pk�ð�k���Þ �c k�c k�þHSO�þ

R
d�d3rðj�2j

g �
�c " �c " � ��c #c "Þ. To bring the action in a compact form,

we define a four-dimensional vector ��k ¼
ð �c k" �c k"c�k"c�k#Þ. Then the action can be cast as S ¼R
d�

P
k½12 ��kð�G�1Þ�k þ �k�, with the inverse Green’s

function defined as

G�1 ¼

�@� � �k" ��k?e�i’k 0 �

��k?ei’k �@� � �k# �� 0

0 � �� �@� þ �k" ��k?ei’k

�� 0 ��k?e�i’k �@� þ �k#

0
BBBBBB@

1
CCCCCCA;

with �k" ¼ �k ��þ h, �k# ¼ �k ��� h, and �k ¼
�k ��. Integrating out the fermionic degrees of freedom,
we obtain the effective action

Seff ¼
Z

d�d3r
j�j2
g

� 1

2
Tr lnð�G�1Þ þ �

X
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�k: (2)

Setting� ¼ �0 þ 	� andG�1
0 ¼ G�1j�¼�0

, we can write

G�1 ¼ G�1
0 þ �. Expanding the effective action to the

second order in the fluctuation �, we approximate

the effective action to be Seff � S0 þ Sg, with S0 ¼
�V j�0j2
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. While Ekþ is always gapped,

Ek� accommodates gapless excitations distributed sym-

metrically along kz ¼ 0 axis at k? ¼ 0: (i) For � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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0
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Peculiar properties of the excitation spectrum are illus-
trated in Fig. 1, where the isoenergy surface for Ek� ¼
0:8EF at unitarity (1=kFas ¼ 0) is shown at zero tempera-
ture. The red dashed curve is for Ek�, the blue solid curve
is for Ekþ, and the green dash-dotted circle is for a
spherical isoenergy surface. The isoenergy surface is sym-
metric with respect to kz ¼ 0 and possesses rotation
symmetry along the z axis. For balanced superfluid

(h ¼ 0), Ek� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�kj � �k?Þ2 þ �2

0

q
, as depicted in

Figs. 1(a) and 1(b), with � ¼ 0:125vF and � ¼ 0:25vF,
respectively. The anisotropy of the isoenergy surface in-
creases as one increases the strength of SOC �. It is
interesting to notice that there exist two branches of iso-
energy for both Ekþ and Ek�, due to the positiveness of the
chemical potential in this case. This will lead to the en-
hancement of BCS pairing through increasing the density
of states around the Fermi surface. Ekþ and Ek� merge
at k? ¼ 0 at which point the effects of SOC vanish. For
h ¼ 0:1EF, the isoenergy surface is shown in Figs. 1(c) and
1(d), with � ¼ 0:125vF and � ¼ 0:25vF, respectively.
Here we have only one branch for both Ekþ and Ek�.
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FIG. 1 (color online). Isoenergy surface (Ek� ¼ 0:8EF) for
the quasiparticle excitation spectrum at unitarity where
1=kFas ¼ 0 at T ¼ 0: (a) h ¼ 0, � ¼ 0:125vF; (b) h ¼ 0, � ¼
0:25vF; (c) h ¼ 0:1EF, � ¼ 0:125vF; (d) h ¼ 0:1EF, � ¼
0:25vF. The red dashed line is plotted for Ek�, the blue solid
line is for Ekþ, and the green dash-dotted circle is for a spherical
isoenergy surface, plotted for comparison.
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Interestingly, the curve for Ekþ develops a lunar structure
for low �, as shown in Fig. 1(c), and increasing � makes it
blunt. For Ekþ and Ek�, the magnetic field h affects the
isoenergy curve in the kz direction: Ekþ shrinks as h
increases, while Ek� expands. The effect of SOC for
Ekþ and Ek� is opposite in the momentum space: The
isoenergy curve in k? expands for Ek�, while for Ekþ it
shrinks. The anisotropy nature of the excitation spectrum
could be probed by momentum-resolved photoemission
spectroscopy [23].

The phase diagram at finite temperature plays a key role
in characterizing polarized fermionic condensates [21,24].
For a fixed interaction strength 1=kFas and a fixed SOC
strength �, the phase diagram could be determined by the
plane spanned by the temperature T ¼ 1=� and the mag-
netic field h. At sufficient low polarization or the magnetic
field h, we expect a finite-temperature phase transition at
which the superfluid order parameter vanishes continu-
ously. Conversely, at low temperature, superfluidity is
destroyed in a first-order fashion with increasing h.
Across this phase transition at fixed h, the polarization
jumps discontinuously. To determine the position of the
phase boundaries, we must minimize the mean-field grand
potential �0 ¼ S0=� with respect to the BCS order pa-
rameter �0. Such a mean-field analysis should provide a
qualitative reasonable description at the weak-coupling
BCS regime. In the absence of SOC (� ¼ 0), it is well
known that there exists a finite-temperature tricritical point
in the BCS limit, which is a natural consequence of having
a first-order transition from the superfluid phase (SF) to the
normal phase (N) at T ¼ 0 and a second-order transition
at zero polarization. First investigated by Sarma [25] in
the context of superconductivity in the presence of a mag-
netic field h, the BCS tricritical is located at
ðTcrit=�0; hcrit=�0Þ ¼ ð0:3188; 0:6061Þ [26], where �0 ¼
8=e2EF expð��=2jkFasjÞ. The phase diagram spanned
by T and h at 1=kFas ¼ �1 for various SOC strengths is
shown in the upper panel of Fig. 2. It consists of four
different phases: the superfluid state with zero polarization
(SF), the magnetized superfluid state with a finite polariza-
tion (SFM), the normal state (N), and the phase separation
(PS) regime enclosed by the first-order line and the second-
order line. As the strength of SOC � increases, the area of
the phase separation region diminishes and eventually dis-
appears for sufficiently large �. With the increasing of
SOC, the regime of SF diminishes very sharply, giving
way to SFM. This could be understood as follows: In the
absence of SOC, the superfluid phase with balanced popu-
lation is robust against the magnetic field h; in the presence
of SOC, coupling between spin-up and spin-down compo-
nents renders that the system is easily polarized, yielding
the diminished region of SF. As a result of competition
between SOC and the magnetic field, the phase space for
SFM expands as it allows a broadened range of the mag-
netic field. The intersection of the second-order line and

the first-order line gives the position of the tricritical point,
denoted as TP in Fig. 2. The evolution of the tricritical
point is shown in the lower panel. As � increases, Ttri

decreases, while htri increases.
The finite-temperature phase diagram for 1=kFas ¼ �1

spanned by T and P is shown in Fig. 3. The ðT=TF; PÞ
phase diagram is highly reminiscent of the 3He-4He sys-
tem, with P playing the role of the fraction of 3He. This is
not surprising, as the finiteP system corresponds in general
to a mixture of bosonic pairs and fermionic quasiparticles.
In the absence of SOC, there exists a broad regime of phase
separation, where the system enjoys minimizing its free
energy through phase separating into the fully paired SF
phase and the magnetized normal phase. The effect of SOC
is dramatic at zero temperature: The system is unstable to
phase separation at any polarization without SOC; how-
ever, as the SOC is turned on, the system is a ‘‘magne-
tized’’ superfluid, in which the superfluid component and
the normal component coexist in an isotropic and homoge-
neous fashion. At finite temperature, by increasing the
SOC strength �, both the regions of normal and the phase
separation diminishes, leaving the broadened regime of
SFM. The spin-orbit coupling stabilizes the magnetized
superfluid phase through mixing of the spin singlet and
spin triplet components that supports a finite population
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FIG. 2 (color online). Upper panel: Finite-temperature phase
diagram as a function of T and h at 1=kFas ¼ �1 (BCS side).
There are four different phases: the N state, the PS state, the SF
state, and the magnetized superfluid (SFM). Above the tricritical
point, the transition line separating the broken-symmetry state
(SFM) and the symmetric state (N) is of second order. Below the
tricritical point (TP), it changes to the first order. Lower panel:
The evolution of the tricritical point ðTtri=TF; htri=EFÞ as a
function of SOC strength �.
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imbalance. The tricritical point moves towards high polar-
ization and low temperature when � is increased, as seen in
the inset.

The effect of SOC on the stability of the system mani-
fests itself on the spin susceptibility of the system. We
examine the stability of the superfluid phase at unitarity at
zero temperature where mean-field theory should give
qualitative reasonable arguments. As shown in Fig. 3, at
� ¼ 0, the system is unstable to phase separation, as the
slope of 	P=	h is always either zero or negative. There
exists a critical polarization (here Pc ¼ 0:68Þ above which
the system reverts to the normal state. When the SOC is
turned on, the superfluid state could support both low
polarization and high polarization, in contrast to what we
saw in Fig. 2 at 1=kFas ¼ �1, where the superfluid state
supports only low polarization. At a sufficient large �, the
slope of the whole curve becomes positive, indicating that
it is able to sustain any polarization.

One of the most important questions to ask about the
unitary superfluid is how the critical temperature varies
with SOC strength. At finite temperature, the contribution
from noncondensed pairs to the density n ¼ @�=@� be-
comes important. This contribution is necessary to ap-
proach the transition temperature of an ideal Bose gas in
the molecular limit where TBEC ¼ 0:218TF and can be
included in the noncondensed phase (�0 ¼ 0) through
the Gaussian contribution to the grand potential: �g ¼
ð1=2�VÞPq;i
m

ln��1ðq; i
mÞ, where 
m denotes the bo-

sonic Matsubara frequencies. For numerical convenience,
we treat the fluctuation by adopting the Nozieŕes–Schmitt-
Rind scheme [27]. The critical temperature for a balanced
superfluid is shown in Fig. 4 at unitarity. The critical
temperature calculated from mean-field theory, Tc0, starts

at a high value and increases slowly at small SOC. By
taking account of the Gaussian fluctuation, the critical
temperature starts at about 0:224TF and increases almost
linearly with increasing SOC strength � for low �, hinting
at a possible way of realizing high-Tc superfluids.
Another interesting question concerning two-species

spin imbalanced Fermi gases is how the picture of the
breached pairing state [19] get modified. Breached pairing
is characterized by a phase separation in momentum space
between the excess of majority species " and the minority
species # in the superfluid state. Signatures of phase
separation are visible in the momentum distribution nk�
and correlation function C#"ðkÞ ¼ jhc�k#c k"ij. Requiring
the pairing amplitude to be zero, one finds the region
for phase separation: (i) k? ¼ 0 and (ii) jkzj 2
½0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ �2

0

qr
� if � �
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½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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qr
;
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�þ
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h2 þ �2

0

q
.

Referring to Fig. 5, for P ¼ 0:7 shown in panels (a) and
(c), there exists two typical momenta kc1 and kc2 between
which the minority species # is depleted and the majority
species has full occupation, reminiscent of a breached
pairing state with two Fermi surfaces (BP2), while for P ¼
0:9 shown in panels (b) and (d), there exists a typical
momentum kc below which the minority species is de-
pleted and the majority species becomes fully occupied,
reminiscent of BP1. In both cases, the correlation function
shows a ‘‘hole’’ for momenta less than the Fermi momen-
tum of the majority quasiparticles. The momentum distri-
bution and the pairing amplitude bear consequences for
experimental observation. The single-particle momentum
distribution of trapped Fermi gases is routinely observed
by time-of-flight measurements [28].
In summary, we have identified a series of new features

arising from spin-orbit coupling. We hope that current
work will add new excitement to the surging field of cold
atom physics involving an artificial gauge field and spin-
orbit coupling.
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FIG. 4 (color online). Left: The polarization P ¼ n"�n#
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as a
function of the magnetic field h for various SOC strength � at
zero temperature at unitarity. Right: The critical temperature for
balanced superfluid at unitarity; Tc0 is calculated from mean-
field theory and Tcg is calculated by taking account of the

Nozieŕes–Schmitt-Rind correction.
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FIG. 3 (color online). Finite-temperature phase diagram in the
plane of T and P at 1=kFas ¼ �1. The inset shows the corre-
sponding polarization Ptri for the tricritical point as a function of
SOC strength �. The phase SF is along the line of P ¼ 0. The
notation is the same as in Fig. 2.
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