
Thermalization in Nature and on a Quantum Computer

Arnau Riera, Christian Gogolin, and Jens Eisert

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany

(Received 23 May 2011; published 23 February 2012)

In this work, we show how Gibbs or thermal states appear dynamically in closed quantum many-body

systems, building on the program of dynamical typicality. We introduce a novel perturbation theorem for

physically relevant weak system-bath couplings that is applicable even in the thermodynamic limit. We

identify conditions under which thermalization happens and discuss the underlying physics. Based on

these results, we also present a fully general quantum algorithm for preparing Gibbs states on a quantum

computer with a certified runtime and error bound. This complements quantum Metropolis algorithms,

which are expected to be efficient but have no known runtime estimates and only work for local

Hamiltonians.
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How do thermal quantum states—cornerstones of a
description in canonical ensembles in quantum statistical
physics—arise from the underlying theory of quantum
physics? This question, a long tradition as it obviously
has, is in many ways still surprisingly wide open. Indeed,
much progress was made only recently [1–11]; this is
motivated and triggered both by new mathematical
[5–9,11,12] and numerical [13] techniques becoming
available, as well as by new experiments with quantum
many-body systems in nonequilibrium [14].

In this work we present a set of precise sufficient con-
ditions for the emergence of Gibbs states from the under-
lying microscopic theory of quantum mechanics. Our
results go beyond previous approaches in that they apply
in a physically relevant weak coupling limit and constitute
the key insight leading to the invention of a quantum
algorithm that prepares Gibbs states with certified preci-
sion and runtime.

The three ingredients that enter the standard textbook
proof of the canonical ensemble in classical statistical
physics are (i) the equal a priori probability postulate
(also known as microcanonical ensemble) and an equili-
bration postulate (such as the second law), (ii) the assump-
tion of weak coupling, and (iii) an assumption about the
density of states of the bath, namely, that it grows faster
than exponentially with the energy and that it can be
locally well approximated by an exponential [15]. Here
each of these steps is translated to the pure state quantum
statistical mechanics approach [1–8]. In particular, (i) can
be replaced by either a typicality argument or a statement
about dynamical relaxation that follows directly from
quantum mechanics and (ii) is made precise by proving a
novel perturbation theorem that has applications far be-
yond the scope of the present Letter.

Our new technical results allow us to design a quantum
algorithm preparing Gibbs states with explicit error and
runtime bounds, invoking a newvariant of phase estimation.

Our algorithm complements another algorithm with certi-
fied runtime that was proposed in Ref. [16] and recent
developments on quantum Metropolis algorithms [11].
Setting and notation.—We consider a system S weakly

coupled to an environment B. The Hilbert space reads
H ¼ H S �H B, where H S and H B are the Hilbert
spaces of the subsystem and the ‘‘bath’’ (with finite dimen-
sions dS and dB). The evolution of the total system is
governed by the Hamiltonian H ¼ H0 þ V, with eigenval-
ues and eigenvectors fEkg and fjEkig consisting of an
uncoupled Hamiltonian H0 ¼ HS þHB, with eigenvalues

and eigenvectors fEð0Þ
k g and fjEð0Þ

k ig, and a coupling

Hamiltonian V. We give conditions under which the re-
duced state c S

t ¼ TrBc t, with c t ¼ jc tihc tj, of the sub-
system S relaxes for most times to a Gibbs state
�S
Gibbs

:¼ e��HS=Tre��HS with inverse temperature �
under unitary time evolution jc ti ¼ e�iHtjc 0i. By this
we mean that for most times their trace distance
Dðc S

t ; �
S
GibbsÞ, which measures the physical distinguish-

ability [17], is small. Note that the decomposition of a
given H into HS, HB, and V is not unique. This freedom
can be used to optimize the bounds in our results, and the
correct HS naturally results from this optimization. We
assume that the Hamiltonians H andH0 are nondegenerate
such that time averaging and dephasing in the eigenbasis
give the same result

! :¼ c t ¼ lim
T!1

1

T

Z T

0
c tdt ¼

X
k

jEkihEkjc 0jEkihEkj:

Whenever an expectation value equilibrates, it does so to
the expectation value in ! [17].
‘‘Natural thermalization’’: Conditions for Gibbs states

to appear.—In this section, we go through points (i)–(iii).
The final conclusion is summarized in Corollary 1. The
central point of the argument is a novel perturbation theo-
rem that relates spectral projectors of weakly interacting
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and noninteracting Hamiltonians in a physically relevant
weak coupling limit. It allows us to connect results on
dynamical equilibration and measure concentration with
classical counting arguments and thereby prove a set of
natural sufficient conditions for thermalization in quantum
mechanics.

A stepping stone in the argument will be states that have
an energy distribution that is flat in an interval [E, Eþ �]
and vanishes otherwise. We indicate such states, and their
dephased states, by a subscript u like in c u or!u and call
them rectangular states. This class of states includes both
mixed states (in particular, the microcanonical state !u)
and pure states and thus, because of the freedom to choose
the phases, usually also initial states that can be locally out
of equilibrium.

The equal a priori probability postulate (i) can be re-
placed by a typicality argument using results from
Refs. [1,2,5]. In Ref. [1], powerful concentration of mea-
sure techniques are used to show that almost all states from
a microcanonical subspace corresponding to a microca-
nonical energy window [E, Eþ�] locally look like the
reduction of the corresponding microcanonical state; i.e.,
Dðc S; !SuÞ is small for all but exponentially few of the
states c from the subspace, where !u is the microcanon-
ical state on the subspace. Alternatively, one can use the
results concerning the dynamics of states with a high
effective dimension of Refs. [5,6]. Under one assumption
on the spectrum of the Hamiltonian (nondegenerate energy
gaps), it is shown that all reduced states on small subsys-
tems of such states tend to the time-averaged equilibrium
state !S and stay close to it for most times. In many-body
systems, natural initial states have a high effective dimen-
sion, and this is provably true for all but exponentially few
states from a microcanonical subspace [5].

The delicate issue, which has up to now not been ad-
dressed in the literature in a general and rigorous way, is
the weak coupling approximation (ii) [6,18]. The problem
is that due to the exponential growth of the Hilbert space
dimension and the at-most polynomial growth of the en-
ergy content, the spectrum of the noninteracting
Hamiltonian H0 becomes exponentially dense with in-
creasing bath size. Therefore, the perturbative limit, in
which the coupling V is weak compared to the gaps of
the noninteracting Hamiltonian H0, and in which it can be
guaranteed that the energy eigenvectors jEki of the full
Hamiltonian H ¼ H0 þ V are close to product states, is
arguably not the physically relevant weak coupling limit.
Even worse, in this limit memory effects provably prevent
thermalization [8]. As in the classical setting, a coupling
should be considered to be weak as long as it does not
change the total energy in a noticeable way. That is to say,
the energy stored in the interaction is much less than our
(microcanonical) uncertainty about the energy of the sys-
tem, i.e., kVk1 � �, or for thermalizing systems much
less than the thermal energy 1=�. This is the relevant weak

coupling limit in which we prove equilibration towards a
Gibbs state. We do this by relating the dephased or micro-

canonical state !u to the state !ð0Þ
u dephased with respect

to the noninteracting Hamiltonian, for which we can easily

perform the partial trace to obtain !Sð0Þ
u and thereby an

approximation to !Su.
Theorem 1 (interacting vs noninteracting case).—Let

!ð0Þ
u and !u be the dephased and microcanonical states

belonging to the interval [E, Eþ �] with respect toH0 and
H ¼ H0 þ V; then for every " < �=2

D ð!Su;!
Sð0Þ
u Þ�Dð!u;!

ð0Þ
u Þ�kVk1

"
þ��þ�"

2�max

; (1)

where �max and �� are the maximum and the difference,

respectively, of the dimensions of the supports of !ð0Þ
u and

!u and �" is the total number of eigenstates of H and H0

in the intervals [E, Eþ "] and [Eþ �� ", Eþ�].
The theorem shows that, for any two initial (possibly

pure) states that have a flat energy distribution in the
interval [E, Eþ �] with respect to the Hamiltonians H0

and H with kVk1 � �, the distance of their reduced

dephased states!Sð0Þ
u and!Su is small. In particular, assum-

ing an approximately constant density of states such that
�"=ð2�maxÞ � 2"=� and ��=ð2�maxÞ & kVk1=�, the
best choice for " is " � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikVk1�=2

p
, which gives

D ð!Su; !
Sð0Þ
u Þ & 4

ffiffiffiffiffiffiffiffiffiffiffiffi
kVk1
�

s
: (2)

In cases with an exponential density of states, for which we
will get equilibration towards �S

Gibbs / e��HS , we can guar-

antee that Dð!Su; !
Sð0Þ
u Þ is small whenever kVk1 � 1=�

(compare Appendix H in Supplemental Material [19]).
Proof.—First note that by monotonicity of the trace

distance and the triangle inequality

D ð!Su;!
Sð0Þ
u Þ�1

2
k!u�!ð0Þ

u k1�kG�Fk1þ��

2�max

; (3)

whereG andF are the projectors onto the support of!u and
!ð0Þ

u , respectively,�min=max¼min=max½rankðGÞ;rankðFÞ�,
and �� ¼ �max ��min. It remains to bound kG� Fk1.
LetG ¼ 1�G andF ¼ 1� F; thenG� F ¼ GF�GF,

and thus k G� Fk1 � kGFk1 þ kGFk1. To bound kGFk1
we decomposeG ¼ Gi þGe into an interior partGi, which
is the projector onto the eigenstates from the interval [Eþ
", Eþ �� "], and the exterior part Ge and find kGFk1 �
k GiFk1 þ kGek1 (see Fig. 1). By using the inequality k �
k1 � rankð�Þk � k1, submultiplicativity of the rank, and that
rankðGiÞ � �max, this can be recast into kGFk1 �
�maxkGiFk1 þ rankðGeÞ. Finally, from Theorem V.II.3.1
in Ref. [20], it follows that kGiFk1 � kVk1=". Repeating
the argument for kGFk1, introducing the notation �" ¼
rankðGeÞ þ rankðFeÞ, and putting everything together gives
the desired result. j
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The level counting argument (iii)—which is ultimately
the reason for the exponential form of �S

Gibbs / e��HS—

carries over to the quantum case in a straightforward way
in the absence of coupling between the system and bath
[2,6], and with a bit more work one can also obtain a
rigorous trace norm error bound. If the number of states
of the bath �B

�ðEBÞ in the interval ½EB; EB þ �� is such

that the proportion �B
�ðE� ES

kÞ=
P

l�
B
�ðE� ES

l Þ is close

to e��ES
k =
P

le
��ES

l for the given E and � and some �, then

the distance of Dð!Sð0Þ
u ; �S

GibbsÞ is small. This can be guar-

anteed under a set of natural assumptions that are satisfied
by a wide range of natural quantum many-body systems
and that resemble the ones commonly used in classical
statistical physics, such as an exponential increase of the
density of states (Appendix A [19]). In particular, for a bath
consisting of m noninteracting spin-1=2 particles with a
slightly varying on-site field strength and average local
energies of 0 and �, one finds (Appendix B [19])

D ð!Sð0Þ
u ; �S

GibbsÞ � 1
2ðe

2
kHSk21
�2m � 1Þ þ C (4)

with C exponentially small in the bath size. We will later
use this bath in our algorithm. In summary, Eq. (4),
Theorem 1, and the results on dynamical equilibration
and random states from the unitary invariant measure
derived in Refs. [1,5] lead to the following conclusions.

Corollary 1.—(Kinematic) Almost all pure states c
from a microcanonical subspace corresponding to an en-
ergy interval [E, Eþ�] of a weakly interacting, suffi-
ciently large quantum system are locally close to a Gibbs
state in the sense that for every gapsðH0Þ � " < �=2 the
probability that

D ðc S; !Sð0Þ
u Þ � 2dSffiffiffiffiffiffiffiffiffiffiffi

�min

p þ kVk1
"

þ ��þ�"

2�max

þ "0 (5)

drops off exponentially with �min"
02. (Dynamic)

Moreover, if the Hamiltonian in addition has nondegener-
ate energy gaps [5], all initial states c u;t¼0, even those

locally out of equilibrium, with a flat energy distribution
in the interval, locally equilibrate towards �S

Gibbs in the

sense that

Dðc Su;t; !
Sð0Þ
u Þ � dS

2
ffiffiffiffiffiffiffiffiffiffiffi
�min

p þ kVk1
"

þ ��þ�"

2�max

: (6)

Both inequalities are robust against deviations from the
rectangular distribution. If the bath has an exponentially
increasing density of states, only a region of bounded

variation followed by a sharp cutoff towards higher ener-
gies should be sufficient (for details, see Appendix C [19]).
‘‘Artificial thermalization’’: A quantum algorithm for

Gibbs state preparation.—It follows from Eq. (4) and
Theorem 1 that all one has to do to prepare a Gibbs state

is to prepare a state close to !u or !ð0Þ
u on a suitable

combination of the system plus bath. This is the central
idea behind the quantum circuit shown in Fig. 2, which
prepares thermal states without using any knowledge about
the eigenstates of the Hamiltonian.
Quantum algorithms that prepare thermal states have

several advantages over classical simulation methods:
Quantum Monte Carlo methods offer a way to, for ex-
ample, estimate correlation functions of thermal states on a
classical computer. However, such methods are restricted
to certain types of Hamiltonians as they suffer from the
sign problem. A procedure that certifiably prepares Gibbs
states in a quantum computer not only overcomes the sign
problem but, moreover, makes it possible to use the ther-
mal state in experiments addressing questions of nonequi-
librium dynamics in quantum simulators, for example, to
study quenches.
Our algorithm requires two registers (see Fig. 2). The

first register R consists of r qubits initially in j0i and is used
to perform quantum phase estimation. The second register
Q holds the quantum system plus bath and is put into a
rectangular state by performing the following steps.
(i) Initialization.—The register Q is initialized into the
completely mixed state �1 ¼ 1

d

Pd
k¼1 jEkihEkj � j0ih0jr.

(ii) Partial quantum phase estimation.—A new form of
quantum phase estimation is performed, which comprises
three steps: the application of r Hadamard gates on the
qubits of R, the application of r controlled-U operations
(withU raised to successive powers of two), and an inverse
Fourier transform on R. After this operation, the state of the
registers is

�2 ¼ 1

d

X2r�1

s;s0¼0

Xd
k¼1

�sð’kÞ�	
s0 ð’kÞjEkihEkj � jsihs0j; (7)

FIG. 2. Quantum circuit that generates a dephased rectangular

state !ð0Þ
u . I is the initialization gate, H are Hadamard gates,

U� ¼ U2� , U ¼ expð�iH0=kH0k1Þ with H0 ¼ HS þHB, and
Fy is the inverse Fourier transform.

FIG. 1. Definition of the projectors used in the proof of
Theorem 1.
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where ’k :¼ Ek=kHk1 and

�sð’kÞ :¼ 1

2r
1� exp½2�ið2r’k � sÞ�
1� exp½2�ið’k � s=2rÞ� :

Note that j�sð’kÞj2 is a probability distribution that be-
comes more and more peaked around s=2r as r increases.
(iii) Measurement.—By measuring the first q qubits of R,
some binary string s	 of length q is obtained, and the
system is left in the state

�3 /
Xðs	þ1Þ�	

s;s0¼s	�	

Xd
k¼1

�sð’kÞ�	
s0 ð’kÞjEkihEkj � jsihs0j; (8)

where �	 :¼ 2r�q is the number of states of the ancilla
register R compatible with the measurement. By choosing
r, one can determine the width � ¼ kHk12�r�	 of the
rectangular state that is prepared. The measured value of s	
determines the energy E ¼ kHk12�qs	 of the rectangular
state and, thereby, the inverse temperature � of the Gibbs
state. To thermalize the subsystem at some particular tem-
perature, the previous steps must be repeated until the
desired energy is measured. The number of runs increases
exponentially with the inverse temperature �. This pre-
vents us from preparing thermal states at very low tem-
peratures (see Appendix D [19]). This is not a deficit of
the algorithm, for otherwise QMA-hard problems (the
quantum analog of NP [21]) could be efficiently solved.
Any general algorithm will presumably have this feature
[21]. The final state of Q is

!QC :¼ TrR�3 /
Xd
k¼1

� Xðs	þ1Þ�	

s¼s	�	

j�sð’kÞj2
�
jEkihEkj: (9)

For large enough r, this state is close to the desired state!u
with E ¼ kHk12�qs	 and � ¼ kHk12�r�	. The precise
deviation of !S

QC from �S
Gibbs,

D ð!S
QC;�

S
GibbsÞ�Dð!QC;!

ð0Þ
u ÞþDð!Sð0Þ

u ;�S
GibbsÞ; (10)

depends on the density of states of the system plus bath. A
good candidate for the bath is the system ofm noninteract-
ing spin-1=2 particles discussed before (Appendix B [19]),
and we give explicit results for the errors and the complex-
ity for this bath.

Algorithm.—For any chosen � > 0, any given inverse
temperature �, and system Hamiltonian HS, the algorithm
presented in Fig. 2, using the bath with m spin-1=2 parti-

cles and energy scale � ¼ ffiffiffiffiffiffiffiffiffiffi
�=m

p kHSk1 discussed before
(Appendix B [19]), prepares the system S of n qubits in a
state within trace norm distance bounded by

Dð!S
QC; �

S
GibbsÞ � 2q�rþ2½1

þ lnð2r�qÞ=�2�e2=�þ�kHSk1þ�kHSk21�2=8

þ 1
2ðe2=� � 1Þ þ C (11)

withC exponentially small inm, to a Gibbs state�S
Gibbswith

a temperature in the interval [�� ��, �þ ��], where

�� � 22�q

ffiffiffiffi
�

m

s
1

kHSk1
�
1þ 1ffiffiffiffiffiffiffi

m�
p

�
: (12)

This is achieved by using r ancilla qubits and running the
algorithm an average number of

#runs � 2q
ffiffiffiffiffiffiffi
�

2m

r
e2=�þ�kHSk1þ�kHSk21�2=8 (13)

times, where each run requires the application of nþ 2r
Hadamard gates, r controlled single qubit gates, nþ q
(with q � r) single qubit measurements, and 2r controlled
unitary time evolutions under H0 ¼ HS þHB for a time
1=kH0k1.
Notice that the time evolution under HB can be imple-

mented with m gates as the bath is a model of uncoupled
spins. In practice, in the absence of an oracle for the
Hamiltonian of the system, the error produced to perform
theU gate carries a second source of error that comes from
the Trotter-Suzuki approximation. Nevertheless, this error
can be suppressed at a polynomial cost for local
Hamiltonians [16,22].
The two contributions to the trace distance error (10) are

computed in Appendixes B and F, the average number of
runs is computed in Appendix F, and the error in the
temperature comes from the discrete nature of the energy
measurement via quantum phase estimation and is calcu-
lated in Appendix E [19]. As is clear from Fig. 2, we needP

r�1
�¼0 2

� ¼ 2r of theU gates, and the part of the circuit that

does not correspond to the controlled time evolution, i.e.,
the initialization and the inverse Fourier transform, re-
quires only the implementation of nþmþ 2r Hadamard
gates, r controlled single qubit gates, and nþmþ q single
qubit measurements.
For a fixed large �, the error of the algorithm can be

made small by choosing an ancilla register of size
Oð�2kHSk21Þ. The exponential scaling of the runtime
with �kHSk1 caused by this is not a deficit of the algo-
rithm, as any general efficient algorithm would contradict
hardness results such as the local Hamiltonian problem
[21]. Unlike our approach, Metropolis algorithms [11]
are expected to be efficient in some cases, but no rigorous
runtime estimates are known and they are applicable only
to local Hamiltonians. An interesting step towards con-
structing an efficient (in system size) and certified algo-
rithm for local systems was recently made in Ref. [23]
(compare Appendix G [19]).
Conclusions.—A set of sufficient conditions for ther-

malization in quantum mechanics has been presented. The
conditions are a natural translation of the standard assump-
tions from classical statistical physics. Along the way, a
perturbation argument for realistic weak coupling has been
proven that we expect to have significant applications
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beyond the scope of this Letter. By using our technical
results, we are able to design a quantum algorithm prepar-
ing thermal states of arbitrary Hamiltonians with rigorous
runtime and error bounds.
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criticism, and the EU (Qessence, Compas, Minos), and
the EURYI for support.
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