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We examine the structure of Maxwell stress in binary fluid mixtures under an external electric field and

discuss its consequence. In particular, we show that, in immiscible blends, it is intimately related to the

statistics of domain structure. This leads to a compact formula, which may be useful in the investigation of

electrorheological effects in such systems. The stress tensor calculated in a phase separated fluid under a

steady electric field is in a good agreement with recent experiments.
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Introduction.—Like any other complex fluid, blends
of immiscible fluids exhibit rich phase behaviors and dy-
namics under external fields [1]. Their domain interface
is inherently soft so that the configuration is easily de-
formed, from which a large stress contribution shows up.
Rheological properties under flow fields have been well
understood at a semiquantitative level [2] where the so-
called interfacial tensor plays a central role to capture the
statistical properties of complicated interconnected do-
main structures.

The shape change of droplets and interfacial instabilities
under an electric field in immiscible fluids having different
dielectric constants have been studied both experimentally
and theoretically for many years [3–6]. Structural transi-
tions induced by electric field have also been investigated
in microphase separation in block copolymers [7–9].
However, these previous studies were concerned mainly
with the morphological change of domains. It should be
emphasized that a change of domain structures drastically
affects flow behavior of the system and, therefore, pro-
duces a unique rheological effect. This type of electro-
rheology is of fundamental importance since the cross
coupling between flow field and electric field is relevant
to characterizing the departure from equilibrium. Recently,
experiments of electrorheology in phase separating fluids
have been conducted [10–14]. A key physical quantity is
the electric (Maxwell) stress, which is expected to be
intimately related with the spatial domain structures.

In this Letter, we discuss a fundamental relation between
the Maxwell stress and domain configurations in fluid
mixtures. We start with the basic equations for phase
separation dynamics in which the free-energy functional
contains the electrostatic energy. First, we show that the
reversible mode coupling term in the dynamic equation for
the local velocity produces exactly the Maxwell stress. We

then eliminate the local electric field ~Eð ~rÞ and obtain an
expression to the Maxwell stress in terms of the external

electric field ~Eex, which involves a nonlocal coupling
among concentration fluctuations of the induced dipole

type. Then, for immiscible blends, the use of the basic
statistical property of random configuration of interfaces at
short distance (known as the Porod law) makes us propose
that the macroscopic Maxwell stress contribution can be
represented in terms of the interfacial tensor. This provides
us with a useful formula which connects the Maxwell
stress with arbitrary configuration of domain structures.
Basic equations.—We consider a binary fluid of A and B

components, the local volume fractions of which are rep-
resented by �Að ~rÞ and �Bð ~rÞ. The free energy for �ð ~rÞ ¼
�Að~rÞ ��Bð ~rÞ consists of two parts:

Ff�ð ~rÞg ¼ F1f�ð~rÞg þ F2f�ð ~rÞ; ~Eð~rÞg; (1)

where

F1f�ð~rÞg ¼
Z

d~r

�
K

2
ð ~r�ð~rÞÞ2 þ fð�ð~rÞÞ

�
(2)

and

F2f�ð ~rÞ; ~Eg ¼ � 1

8�

Z
d~r�½�ð ~rÞ� ~Eð ~rÞ � ~Eð ~rÞ: (3)

The constant K is positive, fð�Þ is a polynomial of � with
two minima. The second free energy F2 is the electric

energy where ~Eð~rÞ is an electric field. The dielectric
constant � is assumed to depend on � as � ¼ ��þ
���ð ~rÞ with �� ¼ ð�A þ �BÞ=2 and �� ¼ ð�A � �BÞ=2,
where the dielectric constant of the A (B) compound is
denoted as �A (�B).
Macrophase separation is governed by the following set

of equations for �ð~rÞ and the velocity field ~vð ~rÞ. The local
volume fraction � obeys

@�

@t
þ ~r � ð ~v�Þ ¼ ~r � L ~r

�
�F

��

�
; (4)

where L is a mobility coefficient. We introduce the poten-

tial U as ~Eð~rÞ ¼ ~rU. The functional derivative of F2 with
respect to U
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�F2f�ð ~rÞ; ~Eg
�U

¼ 0 (5)

gives us the Maxwell equation

~rð� ~EÞ ¼ r�ð�r�UÞ ¼ 0 (6)

(the repeated indices imply summation throughout the
Letter). The condition

~r� ~E ¼ 0 (7)

is automatically satisfied.
The local velocity field is governed by

�
@ ~v

@t
þ �ð ~v � ~rÞ ~v ¼ � ~rp�� ~r �F

��
þ �0r2 ~v; (8)

where � is the fluid density, p is determined to satisfy the

incompressibility condition ~r � ~v ¼ 0, and the viscosity
�0 is assumed to be constant and independent of �ð~rÞ.
Equation (8) may contain another term like U ~rð�F2=�UÞ.
However, this term vanishes because of the relation (5).

It is well known that �� ~rð�F1=��Þ is related with the
stress tensor �Dð ~rÞ arising from the gradient term in (2)
as [15,16]

��ð~rÞr	

�F1

��
¼ r��

D
	�ð ~rÞ: (9)

The off-diagonal parts of �Dð ~rÞ are given by

�D
	�ð~rÞ ¼ �Kðr	�ð~rÞÞðr��ð ~rÞÞ: (10)

In parallel, we may write the electric contribution from
F2 as

��ð~rÞr	

�F2

��
¼ r��

M
	�ð ~rÞ; (11)

where �M
	�ð ~rÞ is identified with the local Maxwell stress

defined by [17]

�M
	�ð~rÞ ¼

�ð ~rÞ
4�

E	ð ~rÞE�ð~rÞ: (12)

To prove this, let us rewrite the left-hand side of Eq. (11) as

��r	

�
�F2

��

�
¼ þðr	�Þ�F2

��

¼ � 1

8�
ðr	�Þðr�UÞðr�UÞ

¼ 1

4�
�ðr	r�UÞðr�UÞ; (13)

where we have absorbed a term in the form of ~rX into the

term ~rp in Eq. (8) to reach the final expression. Then, the
relation (11) follows by calculating the right-hand side
with the definition of the Maxwell stress [Eq. (12)]

r��
M
	� ¼ 1

4�
r�½�ðr	UÞðr�UÞ�

¼ 1

4�
�ðr�UÞðr	r�UÞ; (14)

where we have used the relation (6).
Macroscopic stress.—In principle, the dynamics and

rheology of the system can be studied by the above set of
basic equations. However, this usually requires rather in-
tense numerical computations, and a more coarse-grained
description is called for both to develop the analytically
tractable theory and to get a deeper physical insight. In this
direction, Doi and Ohta proposed a semiphenomenological
rheological constitutive equation for the immiscible blends
under flow [2], where it was important to realize the stress
expression in terms of the domain configurations; i.e.,
the stress �D

	� ¼ h�D
	�ð ~rÞi arising from the gradient term

[Eq. (10)] can be written as [15,16]

�D
	� ¼ h�D

	�ð~rÞi ’ ��q	�: (15)

Here the bracket indicates the averaging over the spatial
configurations, � ’ K=
 is the interfacial tension with 

being the interfacial thickness, and the interfacial tensor is
defined as

q	� ¼ 1

V

Z
dSðn	n�Þ; (16)

where
R
dSðÞ is the surface integral and ~n is the unit vector

normal to the interface. In the electrorheological problems,
it would therefore be desirable to transform the Maxwell
stress by treating the F2 term much in the same way as the
gradient term in the free energy F1. Below, we shall seek
such a meaningful expression for the Maxwell stress in
terms of the external (but not local) electric field as well as
the domain configurations.
Equations (6) and (7) are solved by a perturbation ex-

pansion in terms of �� ¼ ð�A � �BÞ=2 [18]. The electric
field is expanded as

~E ¼ ~Eð0Þ þ �� ~Eð1Þ þOðð��2ÞÞ: (17)

The external field ~Eex constant in space satisfies the zeroth

order solution, i.e., ~Eð0Þ ¼ ~Eex. The first order solution
should satisfy

~rð� ~EexÞ þ �� ~r ~Eð1Þ ¼ 0; (18)

~r� ~Eð1Þ ¼ 0: (19)

If we put ~Eð1Þ in terms of the Fourier transformation Eð1Þ
	; ~k

¼R
d~rEð1Þ

	 ð ~rÞei ~k�~r,

��Eð1Þ
�; ~k

¼ ���

��
Eex
	 G

	�
~k
� ~k; (20)

this satisfies Eqs. (18) and (19), where
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G	�
~k

¼ k	k�

k2
; (21)

and its inverse Fourier transformation is given by

G	�ð ~r; ~r0Þ ¼ Gð ~r; ~r0Þr	r0�; (22)

with �r2Gð~r; ~r0Þ ¼ �ð~r� ~r0Þ. Using Eq. (20), the
Maxwell stress Eq. (12) is written up to the order of
ð��Þ2 as

�M
	�ð ~rÞ ¼ �M0

	� � K�E
ex
	 E

ex
�

Z
d ~r0G��ð ~r; ~r0Þ�ð~rÞ�ð ~r0Þ

� K�E
ex
� E

ex
�

Z
d ~r0G	�ð~r; ~r0Þ�ð ~rÞ�ð ~r0Þ

þ K�E
ex
� E

ex
�

Z
d ~r0

Z
d ~r00G	�ð ~r; ~r0Þ

�G��ð~r; ~r00Þ�ð ~r0Þ�ð ~r00Þ; (23)

where K� ¼ ð��Þ2=ð4� ��Þ and �
M0

	� ¼ ð ��=4�ÞEex
	 E

ex
� is the

trivial average term, and will be omitted in what follows.
After averaging over the system volume V, a

macroscopic stress �M
	� ¼ h�M

	�i ¼ V�1
R
V d~r�

M
	�ð ~rÞ is

obtained as

�M
	� ¼ �K�

V
Eex
	 E

ex
�

Z
~k
G��

~k
h�~k�� ~ki

� K�

V
Eex
� E

ex
�

Z
~k
G	�

~k
h�~k�� ~ki

þ K�

V
Eex
� E

ex
�

Z
~k
G	�

~k
G��

� ~k
h�~k�� ~ki

¼ �K�

V

Z
~k

ðk	Eex
� þ k�E

ex
	 Þð ~k � ~EexÞ

k2
h�~k�� ~ki

þ K�

V

Z
~k

k	k�ð ~k � ~EexÞ2
k4

h�~k�� ~ki: (24)

Domain structures.—The system governed by Eqs. (4)
and (8) generally undergoes macrophase separation in
which domain coarsening proceeds. There are typically
two procedures in order to examine a response from steady
domain structures. One is to study the late stage of the
phase separation process where droplets make a quick
response to the electric field compared with the coarsening
dynamics. The other is to apply steady shear flow so that
the size of droplets remains finite due to their breakup and
reconnection. We shall show below that, in such situations,
the Maxwell stress can be evaluated in terms of the domain
structure characteristics. To this end, we apply a preaver-
aging approximation to the double kernel term in Eqs. (23)
and (24) as follows:

K�

V

Z
~k

k	k�ð ~k � ~EexÞ2
k4

h�~k�� ~ki

) C
K�

2V
Eex
� E

ex
�

Z
~k

k	k�

k2
h�~k�� ~kih

k�k�

k2
ip:a

þ ð	$ �Þ ’ K�

2V

Z
~k

ðk	Eex
� þ k�E

ex
	 Þð ~k � ~EexÞ

k2
h�~k�� ~ki;

(25)

where the preaveraging indicates hk	k�=k2ip:a ¼ 1=3�	�

and the constant C ¼ 3 is determined by requiring that
the result becomes consistent after taking the trace.
Substituting Eq. (25) into Eq. (23) or (24), we obtain

�M
	� ¼ �K�

2
Eex
	 E

ex
�

Z
d~rG��ð ~r1; ~r1 þ ~rÞh�ð~r1Þ�ð~r1 þ ~rÞi

þ ð	 $ �Þ ¼ �K�

2
Eex
	 E

ex
�

Z
d~rGð ~rÞg��1 ð~rÞ

þ ð	 $ �Þ; (26)

where we have introduced the pair correlation of � and
~r� as

gð ~rÞ ¼ h�ð ~r1Þ�ð ~r1 þ ~rÞi; (27)

g	�1 ð ~rÞ ¼ hr	
1�ð ~r1Þr�

2�ð~r2Þij~r2¼~r1þ~r: (28)

Equation (26) can be further transformed with the aid of
the Porod law, which is generally valid in systems with
domain structures where the interface boundaries are rather
sharp; R � 
 with R being the typical domain scale and
the order parameter�ð ~rÞ takes the stable value (normalized
as �0 ¼ 1) except for the interface regions [19]. These
conditions are satisfied at the late stage of phase separation.
In the length scale 
 � r � R, the structure factor

V
R
d~rgð ~rÞei ~k�~r ¼ h�~k�� ~ki exhibits the Porod tail

h�~k�� ~ki ’ Qk�4, where Q ¼ q		 ¼ R
dS=V is the inter-

face area density. This can be written in the real space as
g		1 ðrÞ ’ 2Q=r, where we explicitly write the coefficient
for the three-dimensional case [16].
Performing the integration in Eq. (26), we arrive at our

main result:

�M
	� ’ �K�

2
Eex
	 E

ex
�

Z R

0
dr4�r2

�
1

r

��
2q��
r

�

þ ð	 $ �Þ ¼ ��ðq	�s�� þ q��s�	Þ; (29)

where we cut off the integral at the domain scale, and the
contribution from the lower bound in the thin interface
limit 
=R ! 0 is irrelevant. The similarity of �M

	� with the

usual domain contribution �D
	� [Eq. (15)] is striking. The

dimensionless coupling tensor

s	� ¼ 4�K�E
ex
	 Eex

� R

�
(30)
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measures the relative importance of the electrostatic con-
tribution to the interfacial tension at the scale of the domain
size. We see that the Maxwell stress contribution leads to
an anisotropic renormalization of the interfacial tension.

Comparison with experiment.—We now attempt a quan-
titative comparison of our prediction with an experimental
result. Recently, Orihara et al. examined in detail the
behaviors of an immiscible blend subjected to a step ac

electric field ~Eex ¼ ð0; 0; EexÞ under steady shear flow
~vflow ¼ ð _�z; 0; 0Þ [20]. In their experiment, two polymers
with equal viscosity were blended, the minority phase of
which (with the average volume fraction h�Bi ¼ 1=9)
forms dispersed droplets in the absence of an electric field.
Upon the application of the step electric field, they ob-
served the droplets’ elongation along the electric field,
their coalescence, leading to the network structure forma-
tion. During this transient process, they measured the shear
stress �xz, and at the same time, acquired the three-
dimensional images with a confocal scanning laser micro-
scope. This allowed them to quantitatively estimate the
interfacial tensor q	� and the area density Q. In addition,

by intermittently turning off and on the electric field and
the shear flow, they decomposed the total shear stress as
�xz ¼ �V

xz þ �D
xz þ �M

xz. From these measurements, they
confirmed the relation �V

xz ¼ �0 _� for the viscous stress,
�D

xz ¼ ��qxz for the interfacial stress [Eq. (15)] as ex-
pected. Furthermore, they found the proportionality rela-
tion between the electric component�M

xz and the interfacial
tensor qxz:

�M
xz ¼ �AðexptÞ qxz

Q
; (31)

with the slope AðexptÞ ¼ 64 ðPaÞ.
Our formula Eq. (29) applied to their experimental

situation reads

�M
xz ’ ��qxzszz ’ �4�K�ðEexÞ2h�Bi qxzQ ; (32)

where we have used the relation Q ’ h�Bi=R. Substituting
the experimental parameters h�Bi ¼ 1=9, Eex ¼
6=

ffiffiffi
2

p
kV=mm (effective value of the ac field),

�A ¼ 2:7�0, �B ¼ 16�0 (with �0 being the vacuum permit-

tivity) [20], we obtain the theoretical value AðtheorÞ ¼
4�K�ðEexÞ2h�Bi ¼ 83:7 ðPaÞ in good agreement with the
experimental value. This validates the present formula
Eq. (29) up to a numerical constant, which will enable us
to investigate rheological response of domains in a system-
atic manner by solving the time-evolution equations for the
interfacial tensor.

Summary.—It is well known in electrostatics that a
Maxwell stress is created at the boundary with dielectric
gap. It would therefore be natural to expect that the
Maxwell stress in immiscible blends should be correlated
with the interface configuration. We have demonstrated
that this is indeed the case, and our formula [Eq. (29)]

identifies the Maxwell stress contribution as an excess
interfacial tension. Importantly, this renormalization of
the interfacial tension is anisotropic, i.e., active only for
stress components connected with the external electric
field through the coupling tensor [Eq. (30)].
One may question the accuracy of the preaveraging

approximation [Eq. (25)]. Indeed, the preaveraging was
performed in an isotropic state, so we expect that it retains
its physical justification when the magnitude of the cou-
pling constant [Eq. (30)] is small. Such a situation is
realized when a strong shear flow is applied in which a
factor controlling the domain size is the balance between
surface and viscous stresses [2]; i.e., R ’ �=ð�0 _�Þ, where
_� is the shear rate. Therefore, we find an alternative
expression for the coupling tensor:

s	� ’ 4�K�E
ex
	 E

ex
�

�0 _�
: (33)

This expression implies that the cross coupling between the
flow and the electric field is highly nontrivial. The inverse
of its trace s�1

		 ’ �0 _�=½4�K�ðEexÞ2� is known as a Mason
number in the electrorheological literature.
A remark is in order. The Maxwell stress plays a central

role in the rheology of magnetoresponsive fluids where
magnetic colloids constitute anisotropic clusters such as a
chainlike structure under magnetic field [21]. However, to
our knowledge, there are no theories to connect the
Maxwell stress with the interfacial tensor as has been
formulated in this Letter.
Finally, although semiquantitative agreement with the

experiment is encouraging, we have to note that the for-
mula (29) has been derived by assuming that �� is small.
With this limitation in mind, we expect that the proposed
Maxwell stress formula in terms of the interfacial tensor
provides a natural route to construct a coarse-grained
description of the electrorheology of immiscible blends.
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