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We prove theoretically the possibility of electric-field controlled polaron formation involving flexural

(bending) modes in suspended carbon nanotubes. Upon increasing the field, the ground state of the system

with a single extra electron undergoes a first-order phase transition between an extended state and a

localized polaron state. For a common experimental setup, the threshold electric field is only of the order

of ’ 5� 10�2 V=�m.
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Because of their unique material properties, carbon
nanotubes make ideal flexible nanorods for mechanical
applications [1]. Coupling their mechanical motion to
electronic degrees of freedom leads to nonlinear dynamics
[2]. Current technology [3] allows for the fabrication of
ultraclean nanotubes in which electrons propagate ballis-
tically [4] rather than diffusively. In combination with a
high quality factor [5], this allows for resonant excitation
and coherent manipulation of discrete degrees of freedom.
The envisioned devices may find application in quantum
information processing.

In current devices, a discrete spectrum is obtained by
embedding a quantum dot on a suspended nanotube [2,3].
In this Letter, we prove the possibility of the controllable
formation of discrete states of a different kind, namely,
polarons. A polaron is an electron localized inside a lattice
deformation that the electron itself produces. Our setup is
shown in Fig. 1. It consists of an ultraclean semiconducting
single wall carbon nanotube cantilever. The setup is similar
to the nanorelay proposed in Ref. [6] and to the experi-
mental setup of Ref. [7] but operated in a different regime,
namely, that of a single electron on the cantilever. This is
achieved by putting the Fermi energy of the tube just below
the energy of the bottom of the conduction band. The
Fermi energy is tuned by adjusting the voltage bias on
the metallic electrode A in Fig. 1.

If the electron enters the suspended part of the tube, it
experiences a force F ¼ �eE. The electric fieldEmay be
due to an external source or to the image charge induced by
the electron in the substrate below the cantilever. The force
F deforms the tube. As a result, the potential energy of the
electron is lowered. Thus, the tube deformation produces a
potential well that may trap the electron.

This allows for unprecedented manipulation possibil-
ities. One can, for instance, envisage the coherent manipu-
lation of the quantum state of the polaron by the excitation
(with a high frequency source) of the tube’s flexural modes.
These possibilities are present neither for the well-studied
polarons in bulk solids [8] nor for previously studied

polarons in carbon nanotubes [9] that originate from axial
stretching and radial bending modes of the tube rather than
from macroscopic flexural modes.
Our main results are contained in Fig. 2. At small

electric fields, the ground state consists of an undeformed
tube without a polaron. As the field is increased beyond a
critical value, the system undergoes a first-order phase
transition to a localized polaron state. For realistic values
of a suspended tube length L ¼ 1 �m and tube radius
r ¼ 1 nm, the threshold electric field is 0:051 V=�m,
and the tip deviation is 0.89 nm. This is the field that would
be produced by an image charge induced in a metallic
substrate 0:12 �m below the tube.
The typical energy scale for the polaron state is set by

the electron confinement energy "e ¼ @
2=2m�L2, where

m� is the effective electron mass. The ratio @!0="e, where
!0 is the frequency of the lowest flexural mode of the tube,
is small: It equals 0.0332, independent of r or L. We
therefore neglect the zero point motion (associated with
energy @!0) of the cantilever and treat its displacement as a
classical variable.

FIG. 1. Setup: A semiconducting single wall carbon nanotube
cantilever of length L. The supported part of the tube rests on an
insulating substrate. The voltage-biased metallic electrode A is
connected to the supported part of the tube by means of a tunnel
barrier. An electron that enters the suspended part of the tube
experiences a force F ¼ �eE perpendicular to the tube. As a
result, the tube is deformed so that each point x on the tube
undergoes a displacement yðxÞ perpendicular to the x axis. The
electron wave function c ðxÞ is also indicated.
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We neglect the van der Waals force exerted on
the suspended part of the tube by the distant substrate.
In the Supplemental Material [10], we identify the region
of parameter space where this is a reasonable
approximation.

The truncation of the carbon lattice at the suspended tip
of the tube may lead to states localized at the tip, with
energies in the gap between the valence and conduction
bands [11]. An electron in such a state is virtually unaf-
fected by the deformation of the tube and, hence, cannot
form a polaron. The polaron we consider is formed by an
electron coming from the delocalized states at the bottom
of the conduction band. If localized tip states with energies
in the gap are present, they are filled before the states
involved in polaron formation come into play. The pres-
ence of occupied localized states may lead to an uncom-
pensated charge on the tip. In the main text, we consider
the common situation where no localized states are present
[11] or their charge is neutralized by adsorbing charged
impurities at the tip. In the Supplemental Material [10], we
analyze what happens in the absence of such neutralizing
impurities, concluding that polaron formation still occurs,
albeit at larger electric fields.

The supported part of the tube is tightly clamped to the
substrate by van der Waals forces and cannot be deformed.
We choose a coordinate system as indicated in Fig. 1. The
system is described by two fields, namely, the tube profile
yðxÞ and the wave function c ðxÞ of the single electron in
the conduction band, which can be taken as real and is
normalized. We assume small deflections in the sense that
maxfjyðxÞjg � L.

The ground state configuration is obtained by minimiz-
ing the energy functional

H½c ; y� ¼
Z L

�1
dx

@
2

2m� ð@xc Þ2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼T

þ eEyc 2|fflfflffl{zfflfflffl}
¼V

þ YI

2
ð@2xyÞ2|fflfflfflfflffl{zfflfflfflfflffl}
¼U

: (1)

The boundary conditions on the tube profile are yðx�0Þ¼
y0ðx�0Þ¼0 and y00ðLÞ ¼ y000ðLÞ ¼ 0. The boundary con-
ditions on the wave function are c ð�1Þ ¼ c ðLÞ ¼ 0.
The term T is the kinetic energy of the electron. The

effective mass m� is inversely proportional to the radius r
of the nanotube [12]: m� ¼ 0:6mea0=r, where me is the
true electron mass and a0 is the Bohr radius. In the
Supplemental Material [10], we derive the kinetic term
as well as the vanishing boundary condition at the tip,
starting from the Dirac Hamiltonian that describes electron
dynamics close to the bottom of the tube’s conduction
band.
If the electron is at position x in the suspended part of the

tube, it has undergone a vertical displacement yðxÞ in the
direction of the electrostatic force �eE. This means that
the electron sees a potential well with the same profile as
the tube. The term V in Eq. (1) accounts for this.
The term U is the elastic energy of the deformed tube

[13]. In the small deflection approximation, the energy
stored in stretching modes is smaller than the energy stored
in flexural modes by a factor of the order of ½yðLÞ=L�2�1.
We therefore take only bending energy into account. Y ¼
1:2� 1012 is the tube’s Young’s modulus [14]. I ’ �gr3 is
the second moment of area of the tube cross section. Here
g ¼ 6:4a0 is the thickness of the cylinder wall of the
nanotube [14].

We introduce dimensionless quantities h ¼ 2m�L2

@
2 H,

� ¼ ffiffiffiffi
L

p
c , f ¼ YI

eEL3 y, and z ¼ x=L. The dimensionless

energy functional

h½�; f� ¼
Z 1

�1
dzð@z�Þ2 þ �

�
f�2 þ 1

2
ð@2zfÞ2

�
(2)

depends on a single parameter, the dimensionless coupling
constant � ¼ 2m�ðeEÞ2L5=@2YI.
Two classes of solutions, or phases, can be distin-

guished. The first comprises extended electronic states, in
which the magnitude of the wave function is sizable over
the whole length of the tube. (We consider a tube with total
length � L.) The average charge in the suspended part of
the tube is vanishingly small. The force exerted on the tube
by the electric field, and hence the deformation of the tube,
is zero. The total energy of such a state is equal to the
kinetic energy of the electron. The lowest extended state
energy is zero, corresponding to an electron wave function
with an infinite wavelength. The second class of states is of
the polaron type. These consist of an electron trapped in the
potential well associated with the tube deformation that the
electron itself produces. The electron wave function �

FIG. 2. Results of the numerical calculation: In the top panels
and in the bottom left panel, solid curves indicate ground state
properties. Dashed curves indicate properties of the metastable
polaron state. A thin vertical line indicates the value of �=�c

below which no polaron solutions exist. The critical value of � is
�c ¼ 312:03. Top left: The minimal values h0 of the (dimen-
sionless) energy h½�; f� [cf. Eq. (2)] vs �=�c. Top right: The
dimensionless inverse localization length � vs �=�c. Bottom
left: The ratio n ¼ U=@!0 between the bending energy and the
lowest phonon energy vs �=�c. Bottom right: The electric field
E as a function of �=�c, for L ¼ 1 �m, and three different tube
radii r. Solid curve, r ¼ 0:5 nm; dashed curve, r ¼ 1 nm; and
dotted curve, r ¼ 1:5 nm.
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decays exponentially into the supported part of the tube,
i.e., � ¼ �0e

�z for z < 0, where � is the inverse localiza-
tion length. Because of the negative potential energy of the
trapped electron, the total energy of the state can become
negative. When this happens, the ground state of the sys-
tem is of the polaron variety, since all extended states have
positive energies. Otherwise, the polaron state is meta-
stable, since there exists an extended state of zero energy.

We perform a variational calculation to determine into
which of these two classes the ground state falls for a given
value of �. We approximate � and f as polynomials of
degree M in the suspended part of the tube, i.e.,

�varðzÞ ¼

8>><
>>:
P

M
m¼1 amð1� zÞm if z � 0;�P
M
m¼1 am

�
e�z if z < 0;

(3)

fvarðzÞ ¼
(P

M
m¼1 bmz

mþ1 if z � 0;

0 if z < 0:
(4)

The energy hvar ¼ h½�var; fvar� is then varied with respect
to the am, bm, and �, subject to the constraints that � is
normalized and that its derivative is continuous at z ¼ 0.

In Fig. 3, the (dimensionless) energy hvar, minimized
with respect to am and bm is plotted as a function of � for
various values of the coupling constant �. The calculation
was performed withM ¼ 7. For given �, the polaron state,
if it exists, is associated with a minimum at � > 0 of the
corresponding curve. If the polaron minimum has an

energy that is negative (black dots in Fig. 3), the polaron
is the stable ground state of the system. We obtain a critical
value �c ¼ 312:03. For �< �c, the energy of the polaron
minimum becomes positive, and the polaron state is meta-
stable (open circles in Fig. 3). For �< �min ¼ 258:96, the
curves of hvar versus � no longer have a minimum at
nonzero �, and no polaron state exists. At � ¼ �c,
we obtain a critical tip displacement fcð1Þ ¼ 0:138.
For L ¼ 1 �m and r ¼ 1 nm, this gives ycðLÞ ¼
0:89 nm and a critical electric field 0:051 V=�m. More
detail about the variational calculation, as well as an alter-
native numerical calculation, can be found in the
Supplemental Material [10].
We also calculate n ¼ U=@!0, where U is the bending

energy and !0 ¼ 3:52
ffiffiffiffiffiffiffiffiffiffiffi
YI=�

p
=L2 [8] is the angular fre-

quency of the lowest harmonic of the suspended tube. Here
� ¼ 0:674mcr=a

2
0 is the mass per unit length of the tube,

andmc is the mass of a carbon atom. The quantity n, being
the ratio between the energy stored in the deformed tube
and the energy of a single phonon, is an estimate of the
number of phonons involved in the tube deformation. It
depends only on �, and not on L and r separately, as we
show in the Supplemental Material [10]. In the lower left
panel of Fig. 2, n is plotted as a function of �. When the
transition to the polaron state occurs, there are on the order
of 300 phonons in the tube. The fact that n is large in the
polaron state provides additional a posteriori justification
for treating the tube deformation classically.
An important question to ask is whether values of � that

are of the order of �c and larger can be reached for realistic
values of the length L, radius r, and external electric field
E. Typical radii are of the order of 1 nm. Typical lengths
are of the order of 1 �m. In the bottom right panel of
Fig. 2, we plot the electric field E versus the corresponding
� for L ¼ 1 �m and three values of r ranging from 0.5 to
1.5 nm. We see that producing a coupling constant in
excess of �c requires an electric field of 0:013 V=�m for
the thinnest tubes and 0:126 V=�m for the thickest tubes.
These are quite reasonable values and can be attained by
placing the tube either inside a charged capacitor or above
a metallic substrate. In the latter case, the electric field is
due to the induced image charge in the substrate. To
produce a field of 0:126 V=�m, the distance to the sub-
strate must be 0:076 �m, while for a field of 0:013 V=�m,
it should be 0:23 �m.
The above results focus on the regime of� close to�c. It

is also necessary to check whether realistic parameters
allow for large enough � that the polaron will not be
destroyed by thermal fluctuations. If we assume a tempera-
ture of 10 mK [5], the thermal energy is 10�3 meV. For
L ¼ 1:2 �m, r ¼ 0:8 nm, and E ¼ 0:119 V=�m, we find
a polaron ground state energy �0:6 meV, so that thermal
fluctuations are 2 orders of magnitude too small to destroy
the polaron state. The tip displacement is 14 nm, consistent
with the assumption that y � L.
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FIG. 3. First-order phase transition: The dimensionless energy
hvar minimized with respect to am and bm, versus �, for several
values of the coupling constant �. The bottommost curve cor-
responds to � ¼ 355:2. In each subsequent curve, the value of
alpha is decremented by 4.797. The curves in the white region of
the graph (�> �c ¼ 312:03) have minima at � > 0 where the
energy is negative (black dots). These minima correspond to a
stable polaron ground state. Curves in the light gray region
(�c > �> �min ¼ 258:96) have local minima at � > 0 (open
circles). These minima correspond to a metastable polaron state.
For �< �min (dark gray region), curves have no minimum at
� > 0 and no polaron state exists.
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It is informative to draw a phase diagram, indicating the
region in parameter space where the ground state is of the
polaron variety. There are two conditions that have to be
met. First, as we have discussed above, the coupling con-
stant must be large enough, i.e., �ðr; L; EÞ>�c ¼ 312:03.
Second, the tube deflection must not become too large;
otherwise, the tube will come in contact with the substrate.
We take yðLÞ 	 L as the criterion for large deflection. (At
this point the small deflection approximation, on which our
analysis relied, also breaks down.) In the Supplemental
Material, we derive the inequality involving E, r, and L
that is implied by yðLÞ< L. In Fig. 4, we show three cuts
through the phase diagram in the E-L plane, for r ¼ 0:5, 1,
and 1.5 nm, respectively. We see that the value of the
largest allowed electric field is always several orders of
magnitude larger than the smallest allowed electric field.

In conclusion, we found that at strong coupling (large �)
the ground state of the system is a polaron. As the coupling
is decreased beyond the critical value of �c ¼ 312:03, a
first-order phase transition occurs to an extended state. For
realistic values L ¼ 1 �m for the length of the suspended
tube and r ¼ 1 nm for the tube radius, the critical tip
displacement is 0.89 nm, and an electric field of
0:051 V=�m is required to realize the polaron phase. A
field of this magnitude can be produced by an image charge
in a metallic substrate 0:12 �m below the cantilever. It can
also be produced by placing the tube inside a charged
capacitor.

In future work, we plan to study the nonlinear dynamics
of a single polaron as well as the interaction between
polarons in the same or adjacent suspended tubes. The
eventual aim is to exploit the coupling between mechanical
and electrical degrees of freedom for the coherent manipu-
lation of the quantum state of the polaron.
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FIG. 4. Phase diagram: The three different shaded regions
correspond to different tube radii. Dark gray, r ¼ 0:5 nm;
gray, r ¼ 1 nm; and light gray, r ¼ 1:5 nm. In each case the
shaded region indicates where the ground state is a polaron. At
large L, the upper planes have been cut away to reveal the planes
below. The lower boundaries (black curves) indicate the first-
order transition where � ¼ �c. The upper boundaries corre-
spond to yðLÞ ¼ L.

PRL 108, 076805 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 FEBRUARY 2012

076805-4

http://dx.doi.org/10.1016/j.mser.2003.10.001
http://dx.doi.org/10.1063/1.1927327
http://dx.doi.org/10.1063/1.1927327
http://dx.doi.org/10.1126/science.1176076
http://dx.doi.org/10.1038/nmat1478
http://dx.doi.org/10.1038/nmat1478
http://dx.doi.org/10.1038/nnano.2009.71
http://dx.doi.org/10.1103/PhysRevLett.88.156801
http://dx.doi.org/10.1103/PhysRevLett.94.156802
http://dx.doi.org/10.1103/PhysRevLett.94.156802
http://dx.doi.org/10.1021/nl900612h
http://dx.doi.org/10.1021/nl900612h
http://dx.doi.org/10.1063/1.1557324
http://dx.doi.org/10.1063/1.1557324
http://dx.doi.org/10.1126/science.283.5407.1513
http://dx.doi.org/10.1103/PhysRevLett.86.3372
http://dx.doi.org/10.1088/0953-8984/19/30/306205
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.076805
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.076805
http://dx.doi.org/10.1103/PhysRevB.52.6015
http://dx.doi.org/10.1143/JPSJ.74.777
http://dx.doi.org/10.1002/pssb.200776130
http://dx.doi.org/10.1002/pssb.200776130
http://dx.doi.org/10.1103/PhysRevB.58.14013

