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Weak topological insulators have an even number of Dirac cones in their surface spectrum and are

thought to be unstable to disorder, which leads to an insulating surface. Here we argue that the presence of

disorder alone will not localize the surface states; rather, the presence of a time-reversal symmetric mass

term is required for localization. Through numerical simulations, we show that in the absence of the mass

term the surface always flow to a stable metallic phase and the conductivity obeys a one-parameter scaling

relation, just as in the case of a strong topological insulator surface. With the inclusion of the mass, the

transport properties of the surface of a weak topological insulator follow a two-parameter scaling form.
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The conventional band theory categorizes crystals as
metals, semiconductors, or insulators depending on the
size of their band gap. Over the past few years, it has
been realized that this categorization overlooks the funda-
mental fact that not all insulators are equivalent.
Topological insulators are characterized by nontrivial
band topology leading to gapless metallic surface states
which are robust to disorder that preserves time-reversal
symmetry (TRS) [1]. In two dimensions (2D), the quantum
spin Hall (QSH) insulator possesses a pair of counterpro-
pagating edge modes which are protected from backscat-
tering by TRS. In three dimensions (3D), topological
insulators are classified as either strong (STI) or weak
topological insulators (WTI). The surfaces of STIs have
an odd number of 2D Dirac fermions and have garnered
much of the attention, as TRS disorder cannot localize the
surface states unless it is strong enough to move states
across the bulk energy gap. In contrast, the WTIs have an
even number of Dirac fermions and are believed to be
unstable to disorder [1].

This belief stems partially from comparisons with gra-
phene. Superficially, WTIs and graphene are similar in that
their low energy electronic properties are described by an
even number of Dirac fermions [2]. While both systems
have TRS implemented by an antiunitary time-reversal
operator �, they differ fundamentally in that �2 ¼ þ1
for graphene from SU(2) spin symmetry [3], while for a
WTI �2 ¼ �1 due to the presence of strong spin-orbit
coupling. This places graphene in the orthogonal (AI)
symmetry class, while WTIs belong to the symplectic
(AII) class in the Altland-Zirnbauer classification [4].
The consequences of the minus sign are profound. The
first quantum correction to the Drude conductivity is de-
termined by interference of time-reversal-symmetric paths.
In the orthogonal class, this interference is constructive
(weak localization) and eventually leads to localization of
all single particle states. In contrast, in the symplectic
class, the interference is destructive (weak antilocalization)

giving rise to an enhancement of the conductivity and a
stable symplectic metal phase [5]. Hence, the metallic
phase of graphene is unstable to disorder coupling the
Dirac fermions [6] but is stable in WTIs.
An STI is also in the symplectic class. With an odd

number of Dirac fermions on its surface, it always flows
into the symplectic metal [7,8], reflecting the presence of a
topological term in the effective field theory (nonlinear
sigma model) describing diffusion [9,10]. This topological
term is absent in the same description of a WTI, suggesting
that localization should occur. In conventional semicon-
ductors with spin-orbit coupling, this leads to a metal-
insulator transition at a critical conductivity �c �
1:42e2=h [11].
It is the purpose of this work to explore the precise

conditions under which a WTI undergoes localization.
One reason that this is a pressing question is the following
argument [12]. If one considers obtaining a WTI by stack-
ing 2D layers in the QSH phase, a surface parallel to the
stacking direction would consist of pairs of one-
dimensional (1D) counterpropagating helical modes. The
number of such modes taking part in transport can be even
or odd depending on the number of layers. However, an
odd number of 1D modes in the symplectic class neces-
sarily leads to the presence of a perfectly transmitted mode
and thus a minimum conductance of e2=h [13,14]. While
this argument is one-dimensional in nature as the sample
thickness is constant, it suggests that a WTI can under
certain conditions avoid localization. In the extended two-
dimensional surface, the meaning of this parity effect is
unclear, raising the following question: What is the scaling
behavior of the conductivity in disordered WTIs?
In this Letter, we demonstrate, by numerical simula-

tions, that the scaling flow depends on the presence or
absence of a specific time-reversal-symmetric mass, to be
defined below. In the presence of this mass, a gap opens up
in the spectrum which can lead to localization. Disorder
can still drive the system into a metallic phase, realizing a
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metal-insulator transition at a critical value of conductivity
consistent with what is observed in conventional semi-
conductors. In contrast, in the absence of this mass the
system always flows into the symplectic metal. We dem-
onstrate that this flow follows one-parameter scaling with a
positive beta function, just as in the case of an STI [7,8].
The phase diagram emerging from these observations (cf.
Fig. 1) suggests that one-parameter scaling is not realized
throughout, as one might expect from the minimal non-
linear sigma model description. Instead, we present data
supporting two-parameter scaling, the effective field theory
of which remains unknown.

Hamiltonian and disorder structure.—In the following,
we specialize to the case of a WTI with two Dirac cones,
for which the low energy electronic properties are de-
scribed by the Hamiltonian [15]

H ¼ @vD�
0ð�xkx þ �ykyÞ þ VðrÞ; (1)

where �0 ¼ �0 ¼ 1 is the identity and �x;y;z and �x;y;z are
the Pauli matrices in valley and spin space, respectively. H
is invariant under the time reversal � ¼ i�yK, where K
is the complex conjugation operator. The Dirac velocity vD

(taken isotropic for simplicity) and @ are set to 1 hence-
forth. The disorder potential is written

VðrÞ ¼ X

��

V��ðrÞ�� � �� (2)

with V��ðrÞ a scalar potential and �;� 2 f0; x; y; zg. The
six terms respecting time reversal, listed in Table I, are
independently distributed with correlation

h�V��ðrÞ�V��ðr0Þi ¼ g��Kðr� r0Þ; (3)

where
R
d2rKðrÞ ¼ 1. The two-terminal conductivity � of

a system of size L is obtained numerically by adapting the
transfer matrix method of Ref. [7] to the current problem.
(The widthW is taken large enough that the conductivity is
independent of the ratio W=L.) Each disorder term is
Gaussian correlated with KðrÞ ¼ expð�r2=2�2Þ=ð2��2Þ.
We also take the averages hV��ðrÞi ¼ 0, except for Vyz

and V00 as explained below.

It is useful to first analyze the system in the clean case,
where V�� are constants. hV00i acts as the chemical poten-

tial �, which shifts the energy spectrum trivially. �y�z

anticommutes with all the other potentials (except 1) as
well as the kinetic term � � k; the presence of this term
always gaps the system, and hence we refer tom ¼ hVyzi as
the ‘‘mass.’’ The energy spectrum of the system is given by

½EðkÞ���2¼k2þV2
x0þV2

yxþV2
yyþV2

z0

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

x0þV2
z0Þk2þðVyxkxþVyykyÞ2

q
þm2;

(4)

with minima at k2 ¼ V2
x0 þ V2

yx þ V2
yy þ V2

z0 and kx=ky ¼
Vyx=Vyy, in which case we have ðE��Þ2 ¼ m2.

Therefore, the energy gap is 2jmj, and the system is
insulating when jmj> j�j. The cases m> j�j and m<
�j�j correspond to the two topological sectors in the 2D
AII class, i.e., the trivial and QSH insulator [17]. The
intermediate metallic region �j�j<m< j�j separates
the two phases.
In the presence of disorder, a similar description ap-

plies—by varying m, one can take the system between
the two insulating phases. As conjugation by �x flips the
sign of m, a conducting state should be realized at m ¼ 0.
Because of the stability of the symplectic metal, one does
not expect generically a direct transition between the in-
sulating phases [18–20]. The resulting phase diagram is
shown in Fig. 1. The shape of the phase diagram around the
clean Dirac point g ¼ m ¼ � ¼ 0 is consistent with the
renormalization group flow of the coupling parameters
g��, m, and � away from that point [16]. At a finite

chemical potential, there is a range of mass values jmj &
j�j, where the system undergoes two transitions with in-
creasing disorder strength (dashed line in Fig. 1). A similar
mass term can be defined for an arbitrary even number of
Dirac cones; thus, the phase diagram in Fig. 1 holds gen-
erally for WTIs [16].

FIG. 1 (color online). The phase diagram of the Hamiltonian
(1) as a function of mass m and disorder strength g�� ¼ g. The

solid line marks the metal-insulator transition at � ¼ 0, whereas
the dashed line marks the transition at finite �. At the clean
Dirac point (g ¼ � ¼ 0), there is a topological phase transition
between the two types of insulators. With increasing disorder or
chemical potential �, a metallic phase appears separating the
two topological sectors.

TABLE I. List of time-reversal invariant disorder terms on
the surface of a WTI with two Dirac cones. If only one of the
disorder structures is present in the system, the type indicates the
disorder class of the system and the effect of the disorder. For
example, with only VyzðrÞ�y�z, the system breaks up into two

systems, each identical to a Dirac cone with random mass in
class D. Hence, multiple disorder structures are required for the
system to be class AII.

Disorder structure Disorder type Notation

Vx0 � �x Scalar potential (2� AII)
Vyx � �y�x Gauge potential (2� AIII)
Vyy � �y�y Gauge potential (2� AIII)
Vyz � �y�z Mass (2�D) m ¼ hVyzi
Vz0 � �z Scalar potential (2� AII)
V00 � 1 Scalar potential (2� AII) � ¼ �hV00i
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The numerical data supporting the phase diagram in
Fig. 1 are shown in Figs. 2 and 3. At m ¼ 0 the conduc-
tivity always flows to the symplectic metal, regardless of
the strength of the disorder (cf. Fig. 2). By rescaling the
length (L=� ! L=��), we can collapse all the data on a
single curve demonstrating one-parameter scaling along
the m ¼ 0 line. At large conductivity, the beta function
�ð�Þ ¼ dðln�Þ=dðlnLÞ approaches 1=�� as predicted for
weak antilocalization [5].

By varying m, it is possible to drive the system to an
insulator, as shown in Fig. 3(a). At small m, the system
remains a symplectic metal. At some critical m, a metal-
insulator transition occurs, and it ceases to conduct. For a
fixed nonzero m such that the clean system is insulating,
disorder drives the system into a metallic phase at some
critical disorder strength gc that depends on m, as demon-
strated in Fig. 3(b). In both these cases, at large conduc-
tivity the slope d�=d lnL approaches 1=�, indicative of
weak antilocalization.

Conditions for localization.—Since a WTI is always
conducting in the absence of mass, it is pertinent to discuss
under what circumstances one expects a nonzero mass. The
potential VyzðrÞ couples valleys centered at different mo-

menta and thus requires short-range scatters. Furthermore,
a nonzero mass can arise only when the surface potential is
commensurate with an even number of unit cells, such as in
the case of cleaving the surface at a crystal plane [12] or
when the WTI is grown on a lattice-matching substrate. As
such, a nonzero mass would be marked by an enlargement
of the unit cell and would appear in a crystal diffraction
experiment as a peak of order G	=2, where G	 is a recip-
rocal lattice vector characterizing the weak topological
invariants of the WTI [21]. On the other hand, a period-
doubling perturbation could indicate a valley-mixing term

other thanm (the other possible terms being hVx0i, hVyxi, or
hVyyi). It may also be possible to measure m via spin- and

angle-resolved photoemission spectroscopy, by comparing
the spin-up and spin-down intensities at wave vectorG	=2.
This proposal is motivated by the form of the potential
�y�z, which differentiates the up and down spins.
Localization may also occur due to lattice effects or higher
order terms in the Hamiltonian [18,22,23].
In the case where the WTI consists of an odd number of

QSH layers, we argue that the mass must be identically
zero. Consider stacking n QSH layers, with each layer in
the a1; a2 plane, and the layers a3 offset from one another.
For simplicity, we impose a periodic boundary condition in
the a3 direction. The surface spectrum of a plane parallel
to a3 will have two Dirac cones, centered on different
time-reversal invariant momenta ka and kb, such that
ðkb � kaÞ � a3 ¼ ðG	=2Þ � a3 ¼ �. The second quantized

kinetic Hamiltonian will be of the form �y
a ðk� kaÞ �

��a þ�y
b ðk� kbÞ � ��b. �

y and � are the creation

FIG. 2 (color online). Demonstration of one-parameter scaling
at m ¼ 0. Conductivity as a function of system size for various
parameters all collapsed (by shifting the raw data horizontally)
onto one scaling curve. At large �, the slope d�=d lnL ap-
proaches 1=� (gray line) consistent with weak antilocalization.
Here g00 ¼ g for dotted lines and g00 ¼ 0 for dashed lines. For
all other ��, g�� ¼ g. (Inset) Raw data � vs L=�.

FIG. 3 (color online). (a) Metal-insulator transition as m is
varied. Conductivity is plotted vs system size for fixed �� ¼ 1
and gx0 ¼ gyz ¼ 2. For large m the system flows to an insulating

state, while for small m the system is conducting. Among the
conducting curves, the slope d�=d lnL approaches 1=� at large
�. The data show a metal-insulator transition at �c consistent
with the known value of 1:42e2=h [11]. (b) Metal-insulator
transition as disorder strength g�� ¼ g is varied. The plot is �

vs L=� for fixed m� ¼ 0:05 and � ¼ 0. Increasing disorder
increases the conductivity, inducing a transition from an insulat-
ing phase to a metallic one at some critical g. The dashed line
indicates a slope of 1=�. These figures are consistent with the
phase diagram in Fig. 1.
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and annihilation operators, respectively, satisfying the
boundary condition �ðrþ na3Þ ¼ �ðrÞ. To cast this into
the form of the effective Hamiltonian (1), we perform the
gauge transformation �� ! ��e

ik��r for each of the fer-

mion species. The gauge transformation will, in general,
change the boundary condition for the operators �a and
�b. Notice that exp½iðka � kbÞ � ðna3Þ� ¼ ð�1Þn, and
hence for odd n the transformed operators will have differ-
ing boundary conditions: i.e., one periodic and one anti-
periodic. The mass term coupling the fermion species
together in the effective Hamiltonian must have antiperi-
odic boundary conditions and, hence, averages to zero.
Therefore, for an odd number of stacked QSH layers, m
is zero and the surface (parallel to the stacking direction)
always flows to a metallic phase. These results settle the
question of which of the two possible flow diagrams con-
sistent with the quasi-1D numerics in Ref. [12] is actually
realized.

Two-parameter scaling.—The existence of one-
parameter scaling along the line m ¼ 0 suggests that there
might be a two-parameter scaling collapse for the entire
range of parameters when the mass is nonzero, analogous
to the quantum Hall transition (in the A class) [24–26].
Figure 4(a) shows a possible flow for conductivity � and
the (unknown) second scaling parameter j. The horizontal
scale j distinguishes between the two topological phases,
much in the same way as the Hall conductivity in the
quantum Hall case.

Even without a precise definition of j as an experimental
quantity, we may still infer a number of properties of the
flow diagram. (i) For large conductivity �, �ð�Þ is positive
and � flows upward towards infinity. (ii) There are two
insulating stable fixed points (crosses) at ð�; jÞ ¼ ð0;�1Þ
and regions which flow toward them (shaded regions).
(iii) Consequently, there must be unstable fixed points
(dots) at j ¼ �1 which mark a metal-insulator transition.
(iv) Near j ¼ 0, the system must flow to a metallic phase,
as there should not be a direct phase transition between the

two insulating phases. Figure 4(a) gives the simplest flow
diagram consistent with these requirements.
The two-parameter scaling of ð�; jÞ implies that �ðL=�Þ

cannot be collapsed onto a single scaling curve (as in
Fig. 2) but onto a family of curves parameterized by a
single variable x. The scaling form is

� ¼ fðL=��; xÞ; (5)

where all the microscopic parameters m, �, g��, �, etc.,

determine the conductivity only via the two functions
x and ��.
In Fig. 4(b), we present the accompanied data for our

two-parameter scaling hypothesis, by collapsing� vsL=��
onto a family of curves. For each curve, the parameters �
and g�� were fixed, while m is varied until �ðLÞ overlaps
with the existing set of curves. The data show reasonable
agreement with the scaling form (5).
Quantum transport at the surface of a weak topological

insulator thus shows a scaling structure similar to that of
the quantum Hall plateau transitions. It should be possible
to interpret experiments on weak topological insulators in
terms of the above Dirac model and possibly to control the
parameter m by choosing a substrate whose lattice poten-
tial generates the massive perturbation. In addition, the
electronic structure of thin films of STIs can be mapped
to the two Dirac cone system studied here, with the tunnel-
ing between the surfaces taking the role of the mass [16].
Our results should motivate the search for WTI candidate
materials, of which there are few. It remains to be seen if
the two-parameter flow is generic to all noninteracting
disordered systems in the symplectic class.
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