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We present evidence for a counterintuitive behavior of semiconductor mesoscopic networks that is the

analog of the Braess paradox encountered in classical networks. A numerical simulation of quantum

transport in a two-branch mesoscopic network reveals that adding a third branch can paradoxically induce

transport inefficiency that manifests itself in a sizable conductance drop of the network. A scanning-probe

experiment using a biased tip to modulate the transmission of one branch in the network reveals the

occurrence of this paradox by mapping the conductance variation as a function of the tip voltage and

position.
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The Braess paradox occurring in congested traffic [1] or
other classical networks [2,3] is a counterintuitive behavior
where the overall network performance can paradoxically
degrade after addition of an extra capacity. For example,
adding a new road to a complex network where travelers
selfishly choose their own way, being just inspired by their
knowledge of the global or local network structure, can
lead to a longer transport time at equilibrium for all trav-
elers. In turn, blocking certain streets in complex networks
of congested cities can partially and counterintuitively
relieve congestion [4]. This original Braess paradox [1]
can be explained within the framework of game theory
since the equilibrium point of a many-player game, where
each participant is able to anticipate the strategy of rivals,
i.e., the Nash equilibrium [5], may counterintuitively lead
to a poor compromise for all players. Hence, the Braess
paradox can be viewed as a noncooperative game for which
Nash equilibrium does not follow a simple ‘‘80–20’’ rule,
i.e., it is not ‘‘Pareto efficient’’ [6]. Its macroscopic analogs
in classical physics, such as, e.g., the electrical [2] or
mechanical [3] Braess paradoxes, are then just seen as
extensions of the original road-network paradox.

Apart from a hint that a related paradox contributes to
the magnetism in nanostructured ferromagnets [7], there is,
to our knowledge, no report on a possible analog of the
Braess paradox in quantum physics where interactions are
mostly driven by phase coherence and nonlocality effects,
and elementary excitations obey specific non-Poissonian
statistics. In this Letter, we focus our attention on the
occurrence of a quantum analog of the Braess paradox
and discover, both numerically and experimentally, that
such an anolog can indeed occur in semiconductor meso-
scopic, i.e., phase-coherent, networks.

For our demonstration, we concentrate on mesoscopic
samples with a spatial extension of hundreds of

nanometers, such that many conducting channels contrib-
ute to the total current, but the device lengths remain
smaller than the coherence length, which is of several
microns for high-mobility semiconductor structures at
low temperature [8]. A reason for focusing on large meso-
scopic samples at low temperature is that the large number
of transverse modes involved in transport [9,10] allows us
to distinguish the occurrence of an analog of the Braess
paradox from merely phase-coherent or size effects which
are important only when the structures are weakly coupled
to the leads or a few transverse modes propagate through
them [11]. In addition, by considering a large number of
modes N the broadening of each energy level is about N
times the level spacing and the density of states becomes
almost featureless [12].
To explore the possibility of a mesoscopic Braess para-

dox, we propose a simple two-path network depicted in
Figs. 1(a)–1(c). The basis network takes the form of a
1:0 �m� 1:6 �m rectangular corral connected to left
(source) and right (drain) Ohmic leads via two planar wires
(openings) of width W0 ¼ 300 nm [Fig. 1(a)]. The upper
and lower wires of width W1 ¼ W2 ¼ 100 nm are chosen
to be narrower than the openings so as to behave as con-
strictions for propagating electrons. A central wire directly
connecting source to drain and opening an alternative third
path to bypass the central ‘‘antidot’’ [Figs. 1(b) and 1(c)]
should intuitively result in an increased total current. We
show below that it is exactly the opposite behavior that
actually takes place. We address the influence of the third
route by progressively increasing its widthW3 beyond that
of the two openings. Note that the choice of narrow con-
strictions ensures that the electron flow is congested.
Indeed, in a system where electrons can be backscattered
solely by the walls defining the structure geometry, a
sufficient condition to reach congestion is obtained when
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the number of conducting modes allowed by internal con-
strictions is smaller than the number of conducting modes
in the external openings, which implies W1 þW2 <W0.

We first evaluate the transport properties of such a
system by means of an exact numerical approach based
on the Keldysh Green’s function formalism [13]. For typi-
cal InGaAs=InAlAs heterostructures [14,15] (such as those
considered later in this Letter), the electron concentration
in the two-dimensional electron gas (2DEG) results in a
Fermi energy EF of several tens of meV, which, assuming
an effective mass of 0.04 m0, corresponds to a Fermi
wavelength �F of tens of nm. This implies the injection
or detection of tens of conducting modes through the open-
ings. We consider the device in the linear transport regime
and perform a thermal average around EF at the tempera-
ture T ¼ 4:2 K. A square mesh with 2.5 nm long sides is
used in our calculations. The Green’s function of the
system is described in the real-space representation that
allows us to include all possible conducting and evanescent
modes. Moreover, in order to reduce the computational
time and memory requirement, we adopt a recursive strat-
egy based on the Dyson equation [16–18].

Figure 1(d) demonstrates the occurrence of a Braess-like
paradoxical behavior by showing (triangles) the current
across the structure JðW3Þ as a function of the third channel
width. Even if intuition suggests that enlarging the central
wire should increase the total current, we find that over a
large width range, JðW3Þ monotonically decreases until
losing more than 10 percent at around W3 ¼ 150 nm.
This correction is comparable to the Braess paradox in
classical systems [2,3]. Furthermore, for W3 larger than
the opening width, JðW3Þ slowly increases and eventually
overcomes Jð0Þ when W3 is large enough (W3 > 500 nm)
to strongly reduce electron reflections due to the antidot.
This counterintuitive behavior can be attributed neither to
resonant effects, because of the large number of modes
participating in transport, nor to quantum conductance
fluctuations, which we compute to be 1 or 2 percent of
the average conductance.
More physical insight into theW3 dependence of the net

current is obtained by mapping the spatial distribution of
the current density jJjðX; YÞ for increasing W3. Congested
electron flows are clearly observed for the basis network in
Fig. 1(a) where current maxima are located inside the
upper and lower wires. Now, adding a third path to elec-
trons via the central wire modifies the current spatial
distribution and hence reduces the current flowing through
the lateral wires by providing carriers with an alternative
path to propagate from source to drain. However, as long as
the central wire is not large enough to permit a significant
direct coupling between left and right contacts, the net
current at the right lead decreases as a function of W3. In
Fig. 1(b) the central wire is strongly coupled both to the
upper and lower constrictions, showing that when the para-
dox occurs electrons can experience closed orbits inside
the corral. Figure 1(c) shows the cases where the coupling
between the central wire and the two openings increases
and becomes dominant with respect to the competing
coupling between internal paths.
Such a qualitative picture is clarified in Fig. 1(d) where

we calculate the currents J1, J2, and J3 flowing in the
middle of the device (X ¼ 0) through the upper, lower,
and central branches, respectively. The initial effect of
opening the central wire is to drastically reduce J1 and
J2, whereas J3 is initially too small to compensate for the
loss in drain current. As soon as W3 increases and J3
becomes comparable to J1 ¼ J2 for W3 around 150 nm,
the total current stops decreasing since the direct coupling
between the left and right openings becomes dominant and
finally the paradox is lifted. The fact that the minimum
current condition occurs when the partial currents in the
three branches are identical suggests a direct analogy with
the classical Braess paradox for which the maximum pen-
alty occurs when the maximal symmetry permits a mini-
mum of independent parameters [3].
A demonstration of the robustness of the effect is shown

in Fig. 1(e), where we consider three different Fermi

FIG. 1 (color online). (a)–(c) Contour plots of jJjðX; YÞ (arbi-
trary units) in a rectangular corral supplied with an additional
branch of increasing width W3 ¼ 0, 150, and 300 nm, respec-
tively. The basis corral geometry is given in the text. �F �
20 nm. The same color scale is used for all three images. In (b),
the branches are labeled to match with the definition of partial
currents shown in (d). (d) Total current at the right lead (tri-
angles) and partial currents (squares and circles) flowing in the
different branches as a function of W3. �F � 20 nm. (e) Total
current at the right lead as a function ofW3 for �F � 20, 25, and
30 nm from top to bottom, respectively. All images and curves
have been computed with a source-drain voltage of 1 mV.
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energies corresponding to �F � 20, 25, and 30 nm. The
current exhibits a similar behavior as a function of W3,
showing a clear reduction for a large range of the third wire
width, independent of the Fermi energy. This confirms that
the current decrease is not an interference effect.

We now turn to an experimental demonstration of the
paradox introduced above. Because of the difficulty in
fabricating several devices differing only in the central
wire width, we propose an approach based on scanning-
gate microscopy (SGM). SGM uses the biased tip of a
cryogenic atomic-force microscope (AFM) to scan over a
buried semiconductor device and alter locally its electro-
static potential and hence its conductance [19,20]. SGM
has been previously used to image and manipulate electron
transport in various nanostructures [14,15,17–26]; for a
review, see [27]. Here, we use SGM to tune at will the
electron transmission through the additional branch in a
branched-out network.

The device is shown in Fig. 2(a). It has been patterned
from an InGaAs=InAlAs heterostructure forming
a 2DEG 42 nm below the surface. The carrier density is
3:5� 1011 cm�2 (�F ¼ 42 nm) and the mobility is
100 000 cm2 V�1 s�1 at 4.2 K. The device dimensions are
close to those used in the simulations: The overall size is
1:0� 1:7 �m, all arms are around 220 nm wide, and the
leads to the reservoirs are 420 nm wide. The sample is
mounted in a cryogenic AFM thermalized at 4.2 K in
helium gas. The topography is obtained with a conductive
AFM tip attached to a quartz tuning fork used as a force
sensor [25,27]. Figure 2(b) shows the sample profile mea-
sured along the AB line.

Immediately after recording the topographic profile, the
tip is lifted to 100 nm above the surface and scanned at a

constant height along the same AB line while the conduc-
tance GðYtipÞ is recorded as a function of the tip position

Ytip at a fixed tip voltage Vtip. The conductance profiles

obtained for different Vtip are gathered in Fig. 2(c). Here,

the Vtip ¼ 0 profile (related to a nonperfect tip [27,28]) has

been subtracted in order to focus on the conductance
changes �GðYtip; VtipÞ ¼ GðYtip; VtipÞ �GðYtip; 0Þ induced
by Vtip (the conductance without the tip is around 2e2=h).

Figure 2(c) shows that the conductance for each Ytip along

AB decreases monotonically for negative Vtip and increases

monotonically for positive Vtip, with a distinctive exception

at point C, located in the vicinity of the central arm, where
the conductance shows a clear nonmonotonic behavior
near Vtip ¼ �1 V. This region has been highlighted by

changing abruptly the color scale at �G ¼ 0. The voltage
sweep at this particular location is plotted in Fig. 2(d) and
compared with the average of all sweeps recorded along
the AB line. The decreasing conductance with increasing
Vtip observed at point C in the range (� 1:3 V, �0:3 V)

with an amplitude around 2:5� 10�32e2=h is much larger
than the small conductance fluctuations observed at other
locations. Since decreasing Vtip corresponds to decreasing

the wire transmission, this counterintuitive increase in
current is taken as evidence for a Braess-like paradox.
Figure 2(c) highlights the particular role played by the

central branch in the network since the paradoxical con-
ductance increase is observed only when the negatively
biased tip scans around point C located close to the central
branch, not when it scans over a lateral branch. Repeated
measurements after additional thermal cycles showed the
robustness of the observed phenomenon. However, we
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FIG. 2 (color online). (a) Scanning electron micrograph of the
branched-out mesoscopic network. (b) AFM topographic profile
along the AB line. (c) Conductance changes as a function of
Vtip recorded with the tip scanning above the AB line.

(d) Conductance change extracted from (c) at point C compared
with the average change over the entire AB line.
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FIG. 3 (color online). (a) Conductance variation map as a
function of Vtip and Ytip in the middle of a Braess-paradox device

(Xtip ¼ 0). The corral length and width are 0:8 �m and 1:6 �m.

The width of the openings, lateral arms, and central branch are
340 nm, 140 nm, and 160 nm, respectively. The source-drain
voltage is 1 mV. �F ¼ 47 nm. (b) A zoom on the experimental
image of Fig. 2(c) over the same voltage-position window as in
(a). The data have been centered on point C to account for the
misfit of 270 nm between topographic and electrostatic images
discussed in the text.
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could notice that the exact location around the central
channel, Vtip range, and amplitude of the conduction in-

crease shown in Fig. 2(c) all changed with the sample
history. This is typical for semiconductor mesoscopic de-
vices and is a consequence of the fluctuating potential
landscape probed by the 2DEG due, e.g., to residual charge
traps, that can distort SGM images [27]. In addition, the
SGM tip can progressively be eroded or polluted after
long-term measurements so that the electrostatic and topo-
graphic tip apex may no longer match [27]. These are
likely the reasons why point C in Figs. 2(b) and 2(c) is
shifted by 270 nm to the right-hand side of the central path.

The experiment in Fig. 2(c) can be simulated by comput-
ing the device conductance [17,18]. This is done in
Fig. 3(a), where the tip-induced conductance variation
�G=G ismapped as a function ofYtip andVtip at fixedXtip ¼
0. Structure dimensions are chosen to fit Fig. 2(a) [29]: see
Fig. 4. The tip potential is simulated by a pointlike gate
voltage located 100 nm above the 2DEG, which results in a
spatial extension of the perturbing potential of about
400 nm for Vtip ¼ �1 V. A clear conductance increase

occurs aroundVtip ¼ �1 Vwhen the electrostatic potential

due to the scanning gate depletes the central wire and allows
electrons to flow through the two lateral wires only.

Clearly, simulations reproduce qualitatively the experi-
mental result shown in Fig. 2(c) that is zoomed on in
Fig. 3(b) over the same (Ytip; Vtip) window. The lateral

stripes of positive conductance corrections in Fig. 3(a)
are due to the nonvanishing tail of the tip-induced potential
that for certain values of Ytip and Vtip can improve the direct

coupling between source and drain via the central wire.
Figures 4(a)–4(c) help to interpret this finding by show-

ing how the current spatially redistributes for different tip
positions. In Fig. 4(a) the SGM tip is located over the
lateral wire and, closing the passage of electrons through
the first wire, induces enhanced internal reflections (visible
in the left region) that result in a negative conductance
variation, whereas, in Fig. 4(b) the tip is over the
antidot and induces a negligible �G=G. The counterintui-
tive behavior of the Braess paradox is recovered when
comparing Fig. 4(b) and 4(c). When the tip is located

over the central wire such that only two macroscopic paths
are allowed to carriers [case (c)], a larger current flows
through the device with respect to both the (a) case, where
a lateral channel is closed, and the (b) case, where three
paths are allowed with possible internal closed orbits. This
confirms the particular role played by the central channel
in the occurrence of the mesoscopic Braess paradox that
was already mentioned in the experimental part.
In conclusion, we have discovered a mesoscopic analog

of the Braess paradox, which was known so far only for
macroscopic networks governed by classical physics. Our
findings raise fundamental issues. For instance, can our
microscopic explanation in terms of current redistribution
within the network be reconciled with game theory widely
invoked to explain the classical paradox? Can the paradox
manifest itself in other coherent systems such as plasmonic
interferometers [30]? We hope the present Letter will
attract interest toward such studies.
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