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Spectral properties of the two-dimensional Hubbard model near the Mott transition are investigated by

using cluster perturbation theory. The Mott transition is characterized by freezing of the charge degrees of

freedom in a single-particle excitation that leads continuously to the magnetic excitation of the Mott

insulator. Various anomalous spectral features observed in cuprate high-temperature superconductors are

explained in a unified manner as properties near the Mott transition.
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The metal-insulator transition due to Coulomb interac-
tions between electrons is called the Mott transition. In the
insulating phase, the charge excitation has an energy gap,
whereas the spin excitation is usually gapless [1]. On the
other hand, a metal far away from a Mott insulator exhibits
free-electron-like behaviors. Thus, the question of how the
two limits can be reconciled at the Mott transition is a
fundamental puzzle in condensed-matter physics. In par-
ticular, in relation to the anomalous properties of cuprate
high-temperature (high-Tc) superconductors [2–4], the
Mott transition in a two-dimensional (2D) system has
been investigated from various viewpoints [4–20].
However, its nature remains controversial.

This Letter shows how the single-particle excitation in a
2D metal changes into the spin-wave mode of the Mott
insulator [1], through analyses of numerical results on the
2D Hubbard model according to the exactly known prop-
erties of a one-dimensional (1D) system [21]. In addition,
anomalous spectral features observed in high-Tc cuprates,
such as the pseudogap, Fermi arc, flat band, doping-
induced states, and spinonlike and holonlike branches, as
well as kink and waterfall in the dispersion relation [2–4],
are explained in a unified manner as properties of the 2D
Hubbard model near the Mott transition. The 2D Hubbard
model is defined by the following Hamiltonian:

H ¼ �t
X

hi;ji�
ðcyi�cj� þ H:c:Þ þU

X

i

ni"ni# ��
X

i�

ni�;

where ci� and ni� denote the annihilation and number
operators of an electron with spin � at site i, respectively,
and hi; jimeans that sites i and j are nearest neighbors on a
square lattice. The doping concentration is denoted by �.
We consider the spectral function defined as Aðk; !Þ �
� 1

� ImGðk; !Þ, whereGðk; !Þ denotes the retarded single-

particle Green function at momentum k and energy ! [7]
of the 2D Hubbard model at zero temperature. We employ
cluster perturbation theory (CPT) [20] to obtain Gðk; !Þ,
by using (4� 4)-site cluster Green functions calculated by
exact diagonalization. The size of clusters treatable with
exact diagonalization in CPT is larger than that in cellular
dynamical mean-field theory [14]. We consider the prop-
erties of hole-doped systems with t > 0 for 0�ky�kx��

without loss of generality.
Properties in the ð0; 0Þ-ð�;�Þ direction.—The behavior

in the ð0; 0Þ-ð�;�Þ direction [Figs. 1(i)–1(l)] resembles that
of the 1D Hubbard model [Fig. 2(a)]. However, the spectral
weight near ð0; 0Þ is shifted to lower energies. This can be
interpreted by using the weak-interchain-hopping approxi-
mation. Up to the first order of interchain hopping t?,
we obtain G�1ðk; !Þ ¼ G�1

1D ðkx; !Þ � t?ðkÞ [22,23] by

using the 1D Green function G1Dðkx; !Þ and t?ðkÞ ¼
�2t? cosky. In this approximation (called RPA), the spec-

tral weight of a chain shifts to higher [lower] energies for
t?ðkÞ> 0 [t?ðkÞ< 0] [23,24]. Thus, the spectral weight
near ð0; 0Þ [t?ðkÞ � �2t < 0] shifts to lower energies,
whereas that near ð�=2; �=2Þ [t?ðkÞ � 0] is almost unaf-
fected by interchain hopping [Fig. 2(b)]. As a result, the
dispersion relation exhibits a kink between ð0; 0Þ and
ð�=2; �=2Þ [Figs. 1(i)–1(l)]. This kink can be identified
as the high-energy giant kink observed in high-Tc cuprates
[3,16]. In high-Tc cuprates, a nearly vertical dispersion
relation known as a waterfall [3] has been observed just
below the kink, involving smaller spectral weights than
those above the kink. The RPA is too simple to explain the
reduction in spectral weight. Nevertheless, the results ob-
tained by using CPT [Figs. 1(i)–1(l) and 1(p)], where
higher-order t? corrections are involved within the clus-
ters, show that waterfall behavior appears in the 2D
Hubbard model [16].
The RPA argument above allows us to trace the origins

of the dominant modes in Figs. 1(i)–1(l) back to those of
1D [21,25,26]. In Figs. 1(i)–1(k), the mode for !> 0
originates from the upper edge of the spinon-antiholon
continuum [Fig. 2(a), dashed red curve]. The mode for
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�1 & !=t < 0 and 0 � kx � ky & �=2 primarily origi-

nates from the spinon mode [Fig. 2(a), dashed-dotted
blue curve]. The mode for �4 & !=t & �1 primarily
originates from the holon mode [Fig. 2(a), solid purple
curve]. The mode almost extending over the Brillouin zone
for �6 & !=t & �4 originates from the shadow band
[Fig. 2(a), solid light blue curve]. In Fig. 1(l), the modes
originating from the 1D spinon, holon, and shadow-band
modes can be identified similarly. The mode originating
from the 1D spinon mode and that from the 1D holon mode
have been observed in high-Tc cuprates [3]. The mode
originating from the 1D shadow band should also be

observed if other bands outside the 2D Hubbard model
do not intervene.
A characteristic feature of the Mott transition is the

doping-induced spectral-weight transfer from the upper
Hubbard band (UHB) to the lower Hubbard band (LHB)
[4–6,9–14,21]. As shown in Figs. 1(i)–1(k), the spectral
weight transferred to the LHB for !> 0 is primarily
carried by the mode originating from the upper edge of
the spinon-antiholon continuum. The energy of the mode at
ð�;�Þ [�ð�;�Þ] does not reach zero even in the � ! 0
limit [Fig. 2(c)], and its spectral weight gradually disap-
pears as � ! 0 [Fig. 2(h)]: the mode remains dispersing

FIG. 1 (color). Results on the 2D Hubbard model for U=t ¼ 8 obtained by using cluster perturbation theory. (a)–(d) Aðk; !Þt and
(e)–(h) AðkÞ ½� R

d!Aðk; !Þ� for � ¼ 0:2, 0.07, 0.03, and 0 (from above). In (e)–(h), contributions from !< 0, the lower Hubbard

band (LHB) for !> 0, and the upper Hubbard band are denoted by solid blue curves with hatches, dotted red curves, and dashed pink
curves, respectively. Total spectral weights (solid brown lines) satisfy AðkÞ ¼ 1 within numerical accuracy. (i)–(l) Close-ups of (a)–(d)
for the LHB. The rightmost panels show Að!Þt ½� R

dkAðk; !Þt=ð2�Þ2�. In (l), the dotted green line indicates the energy of the top of

the LHB. The bandwidth of the mode originating from the 1D spinon mode, pseudogap defined by the flat mode at ð�; 0Þ, and that by
the peak in Að!Þ at � ¼ 0 are denoted by �ð0;0Þ, �ð�;0Þ, and �p [pink arrows at ð0; 0Þ, ð�; 0Þ, and in the rightmost panel], respectively.

(m)–(o) Aðk; !Þt at ! � 0 for � ¼ 0:2, 0.07, and 0.03 (from above). (p) Close-up of (k) near ! ¼ 0 in the ð0; 0Þ-ð�;�Þ direction.
The dashed blue curve indicates �2Dðk; kÞ=t ¼ � ffiffiffi

2
p ðv2D=tÞ cosk, where the spin-wave velocity of the 2D Heisenberg model

v2D � 1:18
ffiffiffi
2

p
J [27] (J ¼ 4t2=U). Solid green lines show ! ¼ 0. Gaussian broadening is used with standard deviation � ¼ 0:1t.
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with the spectral weight fading away as � ! 0 [Fig. 1(p)].
This feature is the same as that in 1D [Figs. 2(d) and 2(h)]
[21] and contrasts with that of a doped band insulator and
with that of a Fermi liquid as the effective mass m� ! 1
where the effective bandwidth narrows according to
��ðkÞ / 1=m� [7].

We consider its relationship to the spin-wave mode at
� ¼ 0 [1]. As shown in Fig. 1(p), the dispersion relations
of the mode for !> 0 and the mode originating from the
1D spinon mode for !< 0 in the ð0; 0Þ-ð�;�Þ direction
behave as �2Dðk; kÞ ¼ � ffiffiffi

2
p

v2D cosk near the Mott transi-
tion in the large-U=t regime, where v2D denotes the spin-
wave velocity of the 2D Heisenberg model [27]. In fact, as
shown in Fig. 2(e), the bandwidth of the mode for!> 0 in
the LHB in the � ! 0 limit [�ð�;�Þ] and that of the mode

originating from the 1D spinon mode at � ¼ 0 [�ð0;0Þ]
[Fig. 1(l)] reasonably agree not only with each other but

also with
ffiffiffi
2

p
v2D in the large-U=t regime. Thus, the modes

lead continuously to the spin-wave mode at � ¼ 0 whose
dispersion relation in the ð0; 0Þ-ð�;�Þ direction is ex-
pressed as Eðk; kÞ ¼ j�2Dðk� �=2; k� �=2Þj [1,27]. The
continuous evolution to the spin-wave mode is consistent
with the scaling behavior of spin correlations [7,17,18]. In
the extremely large-U=t regime, the ferromagnetic

fluctuation arising from Nagaoka ferromagnetism [28]
could dominate the antiferromagnetic fluctuation near the
Mott transition, an outcome that is beyond the scope of the
present study. Note that the relationship to the spin-wave
mode is essentially the same as that in 1D [21]: In 1D, the
dispersion relations of the mode for !> 0 in the LHB
and the spinon mode reduce to �1DðkÞ ¼ �v1D cosk in the
� ! 0 limit in the large-U=t limit [Figs. 2(a) and 2(f)]
[21], where v1D denotes the spin-wave velocity of the 1D
Heisenberg model [29]. The modes in 1D lead continu-
ously to the spin excitations at � ¼ 0 whose dominant
mode shows EðkÞ ¼ j�1Dðk� �=2Þj [29].
We next discuss hole pocket behavior. In 1D, the region

between the two gapless points at k ¼ �ð1� �Þ=2 and
�ð1þ 3�Þ=2 [intersections of solid purple and pink curves
with ! ¼ 0 in Fig. 2(a)] can be regarded as a hole pocket
[21]. Its signature should persist near the Mott transition
even in 2D because t?ðkÞ � 0 near ð�=2; �=2Þ. The small
intensity at the intersection of the upper edge of the con-
tinuum [bending back near ð�=2; �=2Þ] with ! ¼ 0 for
kx � ky * �=2 [Figs. 1(j), 1(k), and 1(n)–1(p)] might be

regarded as a signature for hole pocket behavior as in 1D.
Properties near ð�; 0Þ.—As shown in Figs. 1(j)–1(l), the

dominant mode near ð�; 0Þ near the Mott transition is

FIG. 2 (color). (a) Aðk;!Þt in the lower Hubbard band (LHB) for U=t ¼ 8 at � � 0:07 in the 1D Hubbard model obtained by using
the dynamical density-matrix renormalization-group method [21]. Curves indicate dominant modes obtained by using exact solutions
[21]. (b) RPA results for t? ¼ t obtained by using the data in (a). In (a),(b), straight solid green lines indicate ! ¼ 0. Gaussian
broadening is used with standard deviation � ¼ 0:1t. (c) �ð�;�Þ [energy of the mode for !> 0 in the LHB at ð�;�Þ] for U=t ¼ 8
[Figs. 1(i)–1(k) and 1(p)] (blue circles). The solid red curve indicates a fit. The dashed green curve shows results for U ¼ 0. (d) The
same as (c) but for 1D. The solid blue curve shows �ð�Þ=t for U=t ¼ 8 [21]. In (d),(f), �ð�Þ, ��, and �0 are defined in the 1D Hubbard
model similarly to �ð�;�Þ, �ð�;�Þ, and �ð0;0Þ, respectively. (e) �ð�;�Þ=t [�ð�;�Þ=t extrapolated to � ! 0] (red circles) and �ð0;0Þ=t [Fig. 1
(l)] (blue diamonds). The dotted green line indicates

ffiffiffi
2

p
v2D=t, where the spin-wave velocity of the 2D Heisenberg model v2D �

1:18
ffiffiffi
2

p
J [27] (J ¼ 4t2=U). The inset shows J=t dependence. (f) The same as (e) but for 1D. The solid blue curve shows ��=t ð¼ �0=tÞ

[21]. The dotted green line indicates v1D=t, where the spin-wave velocity of the 1D Heisenberg model v1D ¼ �J=2 [29]. (g) �p=t (blue

diamonds) and �ð�;0Þ=t (red circles) [Fig. 1(l)]. The dotted green line indicates a fit in the large-U=t regime, assuming �p; �ð�;0Þ / J.

The inset shows J=t dependence. (h) Spectral weight A for !> 0 in the LHB. Blue squares with a solid line show 2D results for
U=t ¼ 8. Red circles with a dashed line denote 1D results for U=t ¼ 8 taken from Ref. [21]. The dotted green line indicates results for
t ¼ 0 [10]. The inset shows the Mott gap � between the LHB and the upper Hubbard band at � ¼ 0. Blue diamonds show 2D results.
The dotted red curve denotes 1D results [33].
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located below ! ¼ 0, whose dispersion relation is anom-
alously flat. This anomalously flat dispersion relation has
been found in numerical simulations [12,15,19] and in
high-Tc cuprates [2]. Below, we discuss its relationship
to the pseudogap and Fermi arc.

Near the Mott transition, the main peak of Að!Þ ½�R
dkAðk; !Þ=ð2�Þ2� is located below ! ¼ 0 [Fig. 1(k),

rightmost panel]. Namely, the spectral weight decreases
from the peak value as ! ! 0. This feature is called a
pseudogap. To discuss the pseudogap quantitatively, we
define two energies: �p as the energy difference between

the peak in Að!Þ and the top of the LHB at � ¼ 0
[Fig. 1(l)] and �ð�;0Þ as the energy difference between the

flat mode at ð�; 0Þ and the top of the LHB at � ¼ 0
[Fig. 1(l)]. Figure 2(g) shows that the pseudogap defined
in Að!Þ is primarily due to the flat mode at ð�; 0Þ and that
the pseudogap is induced by interactions even without
further-neighbor hopping. In addition, this figure indicates
that the pseudogap is proportional to J (¼ 4t2=U) [�p �
�ð�;0Þ � 0:8J] in the large-U=t regime, implying that it will

be related to the antiferromagnetic fluctuation [12,15]. The
pseudogaps defined by Að!Þ and by the flat mode decrease
as � increases [Figs. 1(j) and 1(k)], because the chemical
potential is lowered with the flat mode almost unchanged.
The pseudogap closes at a � value where the peak in Að!Þ
or the flat mode crosses ! ¼ 0.

The flat mode also causes Fermi arc behavior in the
pseudogap regime. In the ð0; 0Þ-ð�; 0Þ direction, there is
no dominant mode crossing ! ¼ 0 in the pseudogap re-
gime, because the flat mode is located below ! ¼ 0
[Figs. 1(j) and 1(k)]. Thus, there is no Fermi surface along
this direction [12–15]. This feature can also be confirmed
from nðkÞ ½� R

0
�1 d!Aðk; !Þ� [Figs. 1(f)–1(h), solid blue

curves with hatches]: nðkÞ along this direction in the
pseudogap regime [Figs. 1(f) and 1(g), rightmost panels]
almost saturates to that at � ¼ 0 [Fig. 1(h), rightmost
panel]. For the ð�; 0Þ-ð�;�Þ direction, two possibilities
have been discussed: the absence of the mode crossing
! ¼ 0, which leads to hole pockets [12–14], and the
presence of the mode forming the large Fermi surface
centered around ð�;�Þ [15]. Figures 1(k) and 1(o) show
intermediate behavior. Namely, the mode crossing ! ¼ 0
in the ð�; 0Þ-ð�;�Þ direction can be identified as that
originating from the upper edge of the spinon-antiholon
continuum, whose spectral weight fades away as � ! 0.
As a result, the spectral weight almost disappears along
this direction around! ¼ 0. This leads to the behavior that
can be regarded as a Fermi arc (disconnected portion of the
large Fermi surface) [2] [Fig. 1(o)]. This behavior contrasts
with that of the large Fermi surface in the large doping
regime [Fig. 1(m)]. Fully quantitative explanation for the
Fermi arc observed in high-Tc cuprates requires further
study. Also, properties in a very small energy scale inac-
cessible with (4� 4)-cluster CPT are beyond the scope of
this Letter.

Mott gap.—In a (doped) Mott insulator, the Mott gap is
due to Coulomb interactions, whereas the band gap in a
(doped) band insulator is due to a chemical potential
difference between sites or orbitals within a unit cell. A
deeper insight into Mott physics can be obtained by tracing
the origin back to 1D. In 1D, the quasiparticle responsible
for the Mott gap has been identified as that defined by the
k-� string in the Bethe ansatz and called the doublon [21],
which can be regarded as a pair of electrons [30]. By the
presence of the doublon, the UHB can be distinguished
from the LHB [21]. The doublon is not a double occu-
pancy, because the latter exist in the LHB as well as the
UHB forU=t <1. Because theMott gap in 2D can change
into that in 1D by reducing the interchain hopping, the
quasiparticle that determines the energy scale of the UHB
in 2D (doublon in 2D) should be a descendant of the 1D
doublon, i.e., a pair of electrons rather than a double
occupancy. The similarities in the spectral weight trans-
ferred by doping and those in the Mott gap at � ¼ 0
between 1D and 2D [Fig. 2(h)] seem to support the trace-
ability. Apart from the presence of the doublon, we can
identify the dominant modes in the UHB [Figs. 1(a)–1(d)]
as in the LHB for !< 0, noting the particle-hole symme-
try at � ¼ 0, as in 1D [21].
Noting that the high-energy magnetic excitations in a

magnetic field in quasi-1D Heisenberg antiferromagnets,
which can be regarded as repulsively interacting hard-core
boson systems, have been explained by using two-string
solutions [24,31,32], we can generalize the concept of Mott
physics: The generalized doublon (a pair of single particles
definable by a string with a length of two in 1D [21,31,32]
or its descendant in higher dimensions [24]) induced by
repulsive interactions will be responsible for the high-
energy states without multisite (multiorbital) unit cells, in
contrast to band theory. The Mott physics could also be
explored in cold atomic systems.
Summary.—Anomalous spectral features observed in

high-Tc cuprates, such as the pseudogap, Fermi arc, flat
band, doping-induced states, and spinonlike and holonlike
branches, as well as kink and waterfall in the dispersion
relation, were explained in a unified manner as properties
of the 2D Hubbard model near the Mott transition. The
properties near ð�; 0Þ are characterized by the flat mode
unlike 1D features. The physics of the Mott gap was
examined by tracing the origin back to 1D. The Mott
transition is characterized by a dispersing mode that leads
continuously to the spin-wave mode of the Mott insulator
with the spectral weight fading away toward the Mott
transition due to charge freezing. The loss of charge char-
acter from the dispersing mode will be a general feature of
Mott transitions, which contrasts with the transition to a
band insulator without spin-charge separation.
This work was supported by KAKENHI 22014015 and
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were partly performed on the supercomputer at National
Institute for Materials Science.
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