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We derive exact analytical results for the wave functions and energies of harmonically trapped two-

component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin

symmetric wave functions are universal and do not depend on the matrix elements of the two-body

interaction. The comparison with the results from numerical diagonalization shows that the ground state

and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions,

Coulomb interactions, and the repulsive interactions between aligned dipoles.
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Exact analytical solutions for interacting quantum
many-body systems are very rare [1,2]. However, they
are of tremendous interest, since they may provide us
with further insight into the correlations of quantum-
mechanical many-body systems. Even rarer are cases
where the exactly solvable quantum many-body system
can also potentially be realized experimentally. A famous
example is the celebrated Laughlin state [3] and its gen-
eralizations [4] that describe the two-dimensional electron
gas in the quantum Hall regime. In recent years, the
advances with ultracold atomic quantum gases have sig-
nificantly broadened the range of experimentally acces-
sible many-body systems that are also solvable exactly.
An example is the interacting Bose gas in one dimension.
Here, the Bethe ansatz offers an analytic solution to the
Lieb-Liniger model [5], and the fermionization of bosons
in the Tonks-Girardeau [6] limit has been observed [7,8].

Exact analytical solutions exist also for single-
component dilute and weakly interacting Bose-Einstein
condensates under rotation [9–17]. For a large class of
repulsive two-body interactions, the exact ground state of
N bosons at angular momentum L results from projecting
the unique state, where L particles carry one unit of angular
momentum onto the subspace with zero angular momen-
tum for the center of mass [14–16]. In this Letter, we
generalize this exact solution to the interesting case of a
two-component Bose gas [18–20] and arrive at a very
appealing result: As in the single-component case, the
exact solutions at angular momentum L are states where
L bosons carry one unit of angular momentum each, and as
before one has to project out excitations of the center of
mass. In the two-component case, however, isospin enters
as a good quantum number, and eigenstates can be labeled
by the number of isospin-singlet p-wave pairs that enter
the wave function. Isospin was introduced in nuclear

physics by Heisenberg [21] and—like ordinary spin—is
based on the SU(2) symmetry of two-component systems.
The comparison with numerical results shows that, for
repulsive contact interactions, Coulomb forces, and repul-
sive forces between aligned dipoles [22], the ground state
contains a maximum number of isospin-singlet p-wave
pairs. This Letter also explains the recent study by Bargi
et al. [19], who found by numerical diagonalization that the
yrast energy of two-component Bose gases is a simple
function of angular momentum.
We consider a harmonically trapped two-component

dilute gas of N bosons of a first species # and M bosons
of a second species " . We assume that the interactions are
perturbatively weak and of equal strength between those
that are intraspecies and interspecies. This special case of
equal scattering lengths is approximately realized in gases
of 87Rb and gases of 23Na [23]. Let us list the conserved
quantities involved in this problem. Besides the isospin T,
the total angular momentum L, the angular momentum of
the center of mass Lc, the total number of bosons A �
Mþ N, and the isospin projection Tz ¼ ðM� NÞ=2 are
conserved. There is no simple basis that reflects these
symmetries simultaneously. In second quantization, the
conservation of L, A, Tz, and T is straightforward, while
the conservation of L, M, N, and Lc is most easily ex-
pressed in the configuration space within first quantization.
We will employ both pictures in what follows.
Single-particle states �nlm of the spherical harmonic

oscillator have energies Enl ¼ @!ð2nþ lþ 3=2Þ. We
are interested in low-energetic states at high angular mo-
mentum. For weakly perturbative interactions, only
single-particle states with no radial excitation (n ¼ 0)
can contribute, and we can limit ourselves to maximally
aligned states with m ¼ l. Thus, single-particle
states with single-particle angular momentum l are
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�0llðzÞ ¼ zl expð�jzj2=2Þ and �0llðwÞ¼ ðwlexpð�jwj2=2Þ
for the bosons of the species # and " , respectively. We
denote the coordinates of bosons belonging to the # species
by zj ¼ xj þ iyj (j ¼ 1; . . . ; N) and by wj ¼ uj þ ivj

(j ¼ 1; . . . ;M) for the " species. Here, x and y (u and v)
are the two Cartesian coordinates perpendicular to the axis
of rotation for the # ( " ) species. In what follows, we omit
the ubiquitous Gaussians from the single-particle wave

functions. Let b̂yl# and b̂yl" create a boson in the states

corresponding to zl and wl, respectively. The correspond-

ing annihilation operators are b̂l# and b̂l", and the creation

and annihilation operators fulfill the canonical commuta-
tion relations for bosons.

In the case of a single species of boson under rotation,
the ground state at angular momentum L consists essen-
tially of L bosons carrying one unit of angular momentum
each, while the remaining N � L bosons carry no angular
momentum [12]. Small modifications of this picture are
due to the preservation of the angular momentum of the
center of mass. Remarkably, the two-component case is
somewhat similar, and Bargi et al. [19] numerically found
that the ground state consists entirely of single-particle
states with angular momenta l ¼ 0 and l ¼ 1. For L �
N � M, there are Lþ 1 such states (labeled by the number
of bosons of the species # that are in the single-particle state
with l ¼ 1). What is the ground state for repulsive inter-
actions in the space spanned by these states? To address
this question for a two-component system, we recall the
essence of Hund’s rule: For repulsive interactions, the
interaction energy is minimized for wave functions that
are antisymmetric in position space. In fermionic electron
systems such as atoms and quantum dots, this leads to a
symmetric spin wave function. The same reasoning applied
to the present case of a two-species Bose gas would require
the isospin wave function to be antisymmetric, too, thus
making the total wave function symmetric under particle
exchange. The operator

B̂ y � 1ffiffiffi
2

p ðb̂y1#b̂y0" � b̂y0#b̂
y
1"Þ (1)

creates an isospin-singlet p-wave pair (i.e., L ¼ 1 and T ¼
Tz ¼ 0). This pair is antisymmetric in position space and
antisymmetric in isospin space, and thus totally symmetric
under exchange. Thus, the interaction energy is minimized
for condensates of isospin-singlet pairs. In general, we
have N � M, and the ground-state wave function will
also consist of unpaired bosons. The states

j��i � ðT̂�ÞN��ðb̂y0"ÞA�L��ðb̂y1"ÞL��ðB̂yÞ�j0i (2)

have angular momentum L, isospin T ¼ A=2� �,
isospin projection Tz ¼ ðM� NÞ=2, and consist entirely
of single-particle states with angular momenta l ¼ 0
and l ¼ 1. Here, j0i denotes the vacuum, and � ¼
0; 1; . . . ;minðL;NÞ is the number of isospin-singlet pairs.

The isospin operators are T̂z ¼
P1

l¼0ðb̂yl"b̂l" � b̂yl#b̂l#Þ=2,

T̂� ¼ P1
l¼0 b̂

y
l#b̂l", and T̂2 ¼ T̂�T̂y� þ TzðTz þ 1Þ. The ei-

genvalues of T̂z and T̂2 are denoted as Tz and TðT þ 1Þ,
respectively. Let us understand the state (2) in detail,
starting from the right. The application of the pair opera-

tors B̂y to the vacuum yields a state of 2� bosons with
quantum numbers L ¼ �, T ¼ 0, and Tz ¼ 0. The opera-

tors b̂y1" yield the angular momentum L we seek and

increase the number of bosons to Lþ �, while keeping
isospin T ¼ Tz ¼ ðL� �Þ=2 a good quantum number. The

application of the operators b̂y0" increases the number of

bosons to A and keeps isospin a good quantum number.
Finally, the desired particle numbers M and N [i.e., Tz ¼
ðM� NÞ=2] result from the T̂� operators. For repulsive
interactions, the ground state consists of the maximum
number of isospin-singlet pairs [i.e., � ¼ minðL;NÞ].
Thus, the observation by Bargi et al., together with an
adaptation of Hund’s rule for bosons and isospin symmetry,
leads to eigenstates (2) consisting of condensates of
isospin-singlet p-wave pairs. Note that these arguments
are independent of the details of the repulsive interaction.
These are the main result of the present Letter. As in the
single-component case, minor modifications of this picture
are due to the conserved angular momentum of the center
of mass. Let us contrast our results to BCS pairing in Fermi
systems. In BCS theory, a weakly attractive interaction
leads to the formation of Cooper pairs (i.e., pairs of fermi-
ons in time-reversed orbits). The resulting BCS ground
state is a condensate of spin-singlet s-wave pairs, where
the symmetric configuration-space wave function opti-
mizes the interaction energy. In our case, we deal with
bosons and with repulsive interactions, and this modifies
the picture accordingly.
Let us compute the energies of the states (2). We gen-

eralize and extend the results of Ref. [14] to the case of
two-component Bose gases and sketch the main steps. The

Hilbert spaceH ðNÞ
L of N identical bosons # at total angular

momentum L is spanned by products e�1
ðzÞe�2

ðzÞ . . . e�k
ðzÞ

(with �1 þ �2 þ . . .þ �k ¼ L) of elementary symmetric
polynomials

e�ðzÞ � e�ðz1; . . . ; zNÞ ¼
X

1�i1<...<i��N

zi1zi2 � � � zi� : (3)

Note that e�ðzÞ carries � units of angular momentum. For
two-component mixtures ofN andM identical bosons with
N � M, the Hilbert space at total angular momentum L
(with L � M) is the sum

XminðL;NÞ

�¼0

H ðNÞ
� �H ðMÞ

L�� (4)

of direct products of the Hilbert spaces of each component.
Products of elementary symmetric polynomials are line-
arly independent and form a basis. In the absence of
interactions, all states in the Hilbert space are degenerate.
Perturbatively weak interactions will lift this degeneracy.
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The two-body interaction for a two-component mixture
of Bose gases can be written as

V ¼ X
m�0

vmV̂m ¼ X
m�0

vmðÂm þ B̂m þ ĈmÞ: (5)

Here, vm is a matrix element and

Â m ¼ X
1�i<j�N

ðzi � zjÞmð@zi � @zjÞm; (6)

B̂ m ¼ X
1�i<j�M

ðwi � wjÞmð@wi
� @wj

Þm; (7)

Ĉ m ¼ X
1�i�N
1�j�M

ðzi � wjÞmð@zi � @wj
Þm (8)

are the interactions between bosons of species # , between
bosons of species " , and the interspecies interaction, re-
spectively. By construction, the interaction preserves an-
gular momentum L (i.e., the degree of the monomial wave
function it is acting on), is of two-body nature, and—due to
its translationally invariant form (only differences of coor-
dinates and derivatives appear)—preserves the angular
momentum Lc of the center of mass. Furthermore, the
interaction (5) is invariant under the exchange of zl $ wk

and therefore preserves isospin. For the zero-ranged con-
tact interaction, we have vm ¼ ð�1=2Þm=m! [14].

The action of the operators (6) on elementary symmetric
polynomials is particularly simple [14]:

Â me�ðzÞ ¼ B̂me�ðwÞ ¼ 0 for m � 3;

Ĉme�ðzÞe�ðwÞ ¼ 0 for m � 3;

Âme1ðzÞ ¼ B̂me1ðwÞ ¼ ĈmR ¼ 0 for m � 1:

(9)

Here, R � 1
A ½e1ðzÞ þ e1ðwÞ� denotes the center of mass.

Equations (9) show that only the terms 0 � m � 2 of the
Hamiltonian (5) are of interest when acting on products
e�ðzÞe�ðwÞ. For the operators V0 and V1, we find

V̂0 ¼ AðA� 1Þ=2; V̂1 ¼ AðL̂� L̂cÞ;

L̂ � XN
i¼1

zi@zi þ
XM
j¼1

wj@wj
;

L̂c � 1

A

� XN
i;j¼1

XM
k;l¼1

ziwk@zj@wl

�
:

(10)

Only V̂2 is truly nontrivial, and

V̂2e�ðzÞe�ðwÞ ¼ 2ð�N þ�Mþ 2��Þe�ðzÞe�ðwÞ
þ 2ðN � �þ 1Þð�þ 1Þe��1ðzÞe�þ1ðwÞ
þ 2ðM��þ 1Þð�þ 1Þe�þ1ðzÞe��1ðwÞ;
� 2AðN � �þ 1Þe��1ðzÞe�ðwÞR
� 2AðM��þ 1Þe�ðzÞe��1ðwÞR: (11)

Equation (11) shows that the set

M � fRne�ðzÞeL���nðwÞg with 0 � � � minðL;NÞ;
0 � n � L� � (12)

spans a subspace in Hilbert space at angular momentum L

that is left invariant by V̂2. This subspace contains the
states e�ðzÞeL��ðzÞ which are linear combinations of the
eigenstates (2). The states e�ðzÞeL��ðzÞ are, however, not
eigenstates of the center-of-mass momentum. Let P̂0 be the
projector onto wave functions with zero angular momen-

tum of the center of mass, i.e., P̂0c ðz;wÞ¼c ðz�R;w�RÞ
for any wave function c ðz; wÞ. The wave functions
P0e�ðzÞeL��ðzÞ are in the subspace spanned by M [14].

Thus, the states P̂0j��i with j��i from Eq. (2) are eigen-
states of the Hamiltonian (5). Note that these states do not
depend on the matrix elements vm of the interaction.
To compute the corresponding eigenvalues, we make the

ansatz P0c L;n for the eigenfunction with

c L;n ¼
XminðL;NÞ

�¼0

cðnÞ� e�ðzÞeL��ðwÞ: (13)

Here, n is an additional label that distinguishes between
minðL;NÞ þ 1 different wave functions. Our results below
suggest that n is the number of isospin-singlet pairs. The
eigenvalue equation VP0c L;n ¼ EnP0c L;n requires the

coefficients cðnÞ� to fulfill

0 ¼ ½LMþ �ð2Lþ N �M� 2�Þ � "n�cðnÞ�

þ ðN � �ÞðL� �ÞcðnÞ�þ1 þ �ðM� Lþ �ÞcðnÞ��1: (14)

Here, " enters the energy eigenvalue

En ¼ AðA� 1Þv0

2
þ ALv1 þ 2v2"n: (15)

Note that the eigenvalue problem (14) does not depend on
the matrix elements of the two-body interaction. For the
solution of the eigenvalue problem, we make the ansatz

cðnÞ� ¼ Xn
k¼0

�k�
k: (16)

Here, we concealed the fact that the coefficients �k also
depend on n. We insert the ansatz (16) into Eq. (14) and
compare the coefficients of �m, m ¼ 0; . . . ; nþ 2. This
yields

"n ¼ AL� nðAþ 1� nÞ; (17)

which enters the energy (15). The coefficients �k, k < n
are recursively defined in terms of �n (which sets the
normalization). The quantum number n acquires the values
n ¼ 0; 1; 2; . . . ;minðL;NÞ, and the lowest energy is ob-
tained for n ¼ minðL;NÞ.
Figure 1 shows the energy spectrum of a two-component

Bose-Einstein condensate withN ¼ 4 andM ¼ 8 particles
per species, respectively, as a function of the angular
momentum L. The broken lines connect states with ener-
gies En from Eq. (15) for fixed n ¼ 0; 1; 2; . . . (from top to
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bottom). The ground state has n ¼ minðL;NÞ. Note that

cð0Þ� ¼ 1 solves the eigenvalue problem (14) and yields the
state c L;0 ¼ eLðz1; . . . ; zN; w1; . . . ; wMÞ. This state is to-

tally symmetric under the exchange of any particles, has
maximum isospin T ¼ A=2, and contains no isospin-
singlet p-wave pairs. For L � N, the ground state (13)

with n ¼ L has coefficients cðLÞ� =cðLÞ0 ¼ ð�1Þ�ðM� Lþ
�Þ!ðN � �Þ!=½ðM� LÞ!N!� and can be rewritten as

Ŝ
Q

L
k¼1ðzk � wkÞ. Here, the symmetrization operator Ŝ

ensures the symmetry under exchange of bosons of each
species, and the antisymmetry between the two species in
position space is evident. We thus believe that the label n of
the energies (15) has to be identified with the number � of

isospin-singlet p-wave pairs of the eigenstates P̂0j��i with
j��i from Eq. (2).

The reasoning that led to the isospin-singlet p-wave
condensates (2) was based on general arguments regarding
repulsive interactions in SU(2)-symmetric two-component
systems. To check our arguments, we performed numerical
computations for Coulomb interactions and repulsive in-
teractions between aligned dipoles. For the Coulomb in-

teraction, the relevant matrix elements are v0 ¼
ffiffiffiffiffiffiffiffiffi
�=2

p
,

v1 ¼ �v0=4, and v2 ¼ 3v0=64, respectively, and we refer
the reader to Ref. [16] for the analytical derivation. The
comparison with numerical results shows that the exact
results (15) again describe the ground states and low-lying
excitations. Finally, we consider repulsive interactions be-
tween dipoles aligned perpendicular to the trap plane.
The comparison of the numerical spectra and the analytical
results (15) yields v0 � 6:868, v1 � �3:188, and
v2 ¼ 0:755, respectively. Again, the ground state and

low-lying excitations are described by the analytical
results.
In summary, we showed that low-lying states of rotating

two-component Bose gases with weak repulsive interac-
tions are condensates of isospin-singlet p-wave pairs and
we derived analytical expressions for the energies and the
corresponding wave functions. The wave functions are
universal, as they do not depend on the details of the
two-body interaction. Numerical computations demon-
strate that these eigenstates are the ground states and
some of the low-lying excitations for the contact interac-
tion, the Coulomb interaction, and repulsive interactions
between aligned dipoles.
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FIG. 1 (color online). Spectrum of a two-component Bose gas
with N ¼ 4 and M ¼ 8 bosons per species, respectively, as a
function of the angular momentum L for the contact interaction.
The broken lines connect states with energies En from Eq. (15)
for fixed n ¼ 0; 1; 2; . . . ; N (from top to bottom). The solid (red)
line connects states with energies EL for L � N.
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