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We study a system of two distinguishable fermions in a 1D harmonic potential. This system has the

exceptional property that there is an analytic solution for arbitrary values of the interparticle interaction.

We tune the interaction strength and compare the measured properties of the system to the theoretical

prediction. For diverging interaction strength, the energy and square modulus of the wave function for two

distinguishable particles are the same as for a system of two noninteracting identical fermions. This is

referred to as fermionization. We have observed this phenomenon by directly comparing two distinguish-

able fermions with diverging interaction strength with two identical fermions in the same potential. We

observe good agreement between experiment and theory. By adding more particles our system can be used

as a quantum simulator for more complex systems where no theoretical solution is available.

DOI: 10.1103/PhysRevLett.108.075303 PACS numbers: 67.85.Lm, 03.75.�b

A powerful tool for solving complex quantum systems
is to map their properties onto systems with simpler solu-
tions. For interacting bosons in one dimension there is a
one-to-one correspondence of the energy and the square
modulus of the wave function jc ðx1; . . . ; xnÞj2 to a system
of identical fermions [1]. As one consequence the local pair

correlation gð2Þð0Þ of an interacting 1D Bose gas vanishes
for diverging interaction strength just like in a gas of non-
interacting identical fermions. Thus, a large decrease of

gð2Þð0Þ in a repulsively interacting 1D Bose gas is strong
evidence for the existence of fermionization [2].

The many-body properties of such 1D bosonic systems
have been studied in [3,4]. However, the essential property
of a such a gas—namely the fermionization [1,5]—is al-
ready present in a system of two interacting particles,
regardless of the particles being identical bosons or distin-
guishable fermions [6]. This two-particle problem is of
significant interest because it is the main building block of
all 1D quantum systems with short-range interactions. It is
also one of the few quantum mechanical systems for which
an analytic solution exists. In contrast to measurements of
bulk properties such as compressibility and collective os-
cillations or measurements of local pair correlations [2], we
access the energy and the square modulus of the wave
function of the fundamental two-particle system. We di-
rectly observe fermionization of two distinguishable fermi-
ons by comparing two distinguishable fermions with two
identical fermions in the same potential. In optical lattices
the energy of similar two-particle systems has been mea-
sured for large but not diverging interaction strength [7,8].

We realize such a two-particle system with tunable
interaction using two fermionic 6Li atoms in the ground
state of a potential created by an optical dipole trap and a
magnetic field gradient [Figs. 1(a) and 1(b)]. We can
prepare this state with a fidelity of ð93� 2Þ% [9]. The

energy of such two particles interacting via contact inter-
action—which is fully described by one parameter, the 1D
coupling strength g—can be analytically calculated for a
harmonically trapped 1D system [10,11]. The problem can
be separated into center-of-mass and relative motion be-
cause of the harmonic trapping potential and because the
interaction term only depends on the relative distance
between the two particles. Then the solution can be written
as a product of the center-of-mass and the relative wave
function. The latter is shown in Fig. 2(a) for different

FIG. 1 (color online). Trap setup and sketch of the performed
experiment. (a) Our trap consists of an optical potential created
by a tight focus of a laser beam and a magnetic field gradient.
(b) Deterministic preparation of two fermions in the ground state
of a potential well. (c) We measure the tunneling dynamics
through a potential barrier for a repulsively interacting system
of two distinguishable fermions for various interaction energies.
The mean interaction energy per particle is indicated by the
parameter U. These results are then compared with the tunneling
dynamics of two noninteracting identical fermions in the same
potential.
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values of the coupling strength. For diverging coupling
strength the square modulus of the wave function of a
system of two distinguishable fermions is the same as for
two noninteracting identical fermions. This is the point
where fermionization occurs.

In our setup the particles are confined in a three-
dimensional cigar-shaped potential with an aspect ratio
of about 1:10, which can be harmonically approximated
with trap frequencies of !k ¼ 2�� ð1:234� 0:012Þ kHz
in longitudinal direction and !? ¼ 2�� ð11:88�
0:22Þ kHz in perpendicular direction. It has been shown
in [12] that the energy of two interacting particles in the
ground state of such a potential is well described by the 1D
solution given in [10]. Hence we treat our system in this 1D
framework. The combined optical and magnetic potential
in one-dimensional form reads:

Vr¼0ðzÞ ¼ pV0

�
1� 1

1þ ðz=zrÞ2
�
��mB

0z; (1)

where V0 ¼ kB3:326 �K is the initial depth of the optical
potential, p is the optical trap depth in units of the initial

trap depth, zR ¼ �w2
0

� is the Rayleigh range of the optical

trapping beam with minimal waist w0 ¼ 1:838 �m and
wavelength � ¼ 1064 nm, �m is the magnetic moment of
the atoms, and B0 ¼ 18:92 G=cm is the strength of the
magnetic field gradient. The determination of the trap
parameters is described in the Supplemental Material
[13]. The 1D coupling constant g can be calculated from
the 3D scattering length a3D and depends strongly on the
confining potential, which is characterized by the harmonic

oscillator length a? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=�!?

p
[14], where @ is the re-

duced Planck constant and � ¼ m
2 the reduced mass of two

6Li atoms with mass m. The coupling constant is given by

g ¼ 2@2a3D
�a2?

1

1� Ca3D=a?
; (2)

with C ¼ �ð12Þ ¼ 1:46 . . . and � the Riemann zeta function.

The value of g can be changed by tuning the 3D scattering
length via a magnetic Feshbach resonance [15,16]. When
a3D approaches the extension of the confining harmonic
oscillator potential a?, a confinement-induced resonance
(CIR) occurs for a3D ¼ a?=C [17,18]. Figure 4(b) shows
gj"#i for two distinguishable atoms in the two lowest 6Li
hyperfine states, j F ¼ 1

2 , mF ¼ � 1
2i and j F ¼ 1

2 ,

mF ¼ 1
2i—labeled j"i and j#i—as a function of the mag-

netic offset field [19]. For two identical fermions s-wave
scattering is forbidden and thus gj""i ¼ 0 for all values of

the magnetic offset field.
To determine the energy of the two-particle system in

state j"#iwe modify the trapping potential such that there is
a potential barrier of fixed height through which the parti-
cles can tunnel out of the trap (see Fig. 1(c) and
Supplemental Material [13]). In the presence of repulsive
interactions the energy of the system is increased accord-
ing to the blue [dark gray] curve in Fig. 2(b). This de-
creases the effective height of the barrier and the particles
tunnel faster. We allow the particles to tunnel out of the trap
for different durations and record the number of particles
remaining in the trap. By choosing an adequate barrier
height we ensure that the time scale for tunneling is smaller
than the lifetime of our samples in the ground state (about
60 s). Additionally, obtaining meaningful tunneling time
constants requires the time scale of the tunneling to be
much larger than the inverse longitudinal trap frequencies
of 0.7 ms. By averaging over many experimental realiza-
tions we obtain the expectation value of the particle num-
ber in the potential for different hold times (Fig. 3). By
performing this measurement for various values of the
coupling strength we can determine the dependence of
the system’s energy on gj"#i.
We find that for the observed range of interaction

energies—which are on the order of @!k—only one parti-

cle leaves the potential even for long hold times. In a

FIG. 2 (color online). Two particles in a 1D harmonic poten-
tial. (a) Relative wave function of two interacting fermions (blue
[dark gray]) and two identical fermions (green [light gray])
in a 1D harmonic potential. For infinitely strong interaction
(� 1=gj"#i ! 0) the probability to find the two distinguishable

fermions at the same position vanishes. In this case the square
modulus of the total wave function of two distinguishable
fermions is the same as for two identical fermions. (b) Kinetic
energy of the relative motion. The blue [dark gray] and black
curves show the energy of two interacting fermions in state j"#i
depending on the coupling strength gj"#i given in units of ak ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=�!k

q
. The green [light gray] line shows the energy of two

identical fermions in state j""i. The energy is plotted versus
�1=gj"#i for a better comparison with the experimental results.

The experimentally studied region is indicated by the dashed
rectangle.
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simple picture this can be explained as follows: If one
particle tunnels through the barrier the interaction energy
is released as kinetic energy, which leaves the other particle
in the unperturbed ground state of the potential. This state
has a tunneling time scale much larger than the duration of
the experiment. Thus we can fit exponentials of the form

NðtÞ ¼ Ntunnele
�ðt=�Þ þ Nremain to the mean particle number

to deduce the tunneling time constant � for different mag-
netic fields. The mean numbers of tunneled (Ntunnel) and
remaining particles (Nremain) are expected to be unity.
However, due to the finite preparation fidelity they are
slightly lower. In Fig. 4 we show the determined tunneling
time constants of a system of two interacting fermions for
different interaction energies as a function of the magnetic
field. We observe a decrease in the tunneling time constant
over 2 orders of magnitude for increasing magnetic field
due to the gain in interaction energy caused by the CIR.

For a direct comparison of the properties of the two
interacting distinguishable fermions with those of two
identical fermions we perform the same measurement
with two fermions in state j""i in the same potential
[Fig. 1(c)]. The results of these reference measurements
are shown in Figs. 3 and 4 (green [light gray] points). As
the identical fermions are noninteracting we find no
dependence of the tunneling time constant on the magnetic

field in this measurement. Comparing the results of the two
systems we find that the tunneling time constant for the
interacting system decreases monotonically with increas-
ing magnetic field and crosses the magnetic field indepen-
dent tunneling time constant of the two identical fermions.
Thus there is one magnetic field value where the tunneling
time constants of both systems are equal. At this point both
systems must have the same energy. For a 1D system with
given energy there is only one unique solution for the
square modulus of the wave function. Therefore, right at
the observed crossing point of the tunneling time constants
the energy and the square modulus of the wave function
jc ðz1; z2Þj2 of the two interacting distinguishable fermions
and the two noninteracting identical fermions must be
equal. Hence, exactly at this crossing point the system of
two distinguishable fermions is fermionized. As predicted
by theory [6,10] we find the position of the fermionization

FIG. 3 (color online). Mean number of particles remaining in
the potential well. After modifying the initial potential the
particles can tunnel through a barrier of fixed height for a certain
hold time. Subsequently, tunneling is switched off and the mean
particle number left in the potential is recorded by averaging
over many experimental realizations. Exponential fits to the data
(solid lines) allow us to extract the tunneling time constants of
two interacting distinguishable fermions for different interaction
strengths (blue [dark gray]) and of two identical fermions (green
[light gray]). Each data point is the average of about 70 mea-
surements except for the first and the last data point in each
series (about 230 realizations). The errors are the standard errors
of the mean.

FIG. 4 (color online). (a) Tunneling time constants for differ-
ent values of the 1D coupling strength. The tunneling time
constant of two repulsively interacting distinguishable fermions
(blue [dark gray] curve) decreases by 2 orders of magnitude with
increasing magnetic field. This is attributed to the gain in
interaction energy when ramping across the CIR. The tunneling
time constant of two noninteracting identical fermions (green
[light gray] line) remains unaffected by the magnetic field within
our experimental accuracy. At the magnetic field value where
both curves cross we identify the fermionization of two distin-
guishable fermions. The errors are the statistical errors of the fits
shown in Fig. 3. The blue [dark gray] line is a guide to the eye.
(b) One-dimensional coupling constant gj"#i with a CIR at

ð783:4� 0:4ÞG. For the calculation we used the perpendicular

harmonic oscillator length a? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=�!?

p
of the modified

potential.
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at the magnetic field value where gj"#i diverges due to the

confinement-induced resonance.
For magnetic field values below the CIR we have real-

ized the two-particle limit of a Tonks-Girardeau gas [6].
Above the CIR we have created a super-Tonks state con-
sisting of two particles. The super-Tonks state is a strongly
correlated metastable state above the attractive ground
state branch [see Fig. 2(b)]. In a system with particle
numbers � 3 inelastic three-body collisions lead to a fast
decay of the metastable super-Tonks-Girardeau gas [4]. In
contrast, our two-particle super-Tonks state is stable
against collisional losses since there is no third particle
available to undergo an inelastic three-body event. To
determine the energy of the two interacting fermions
from the measured tunneling time constants we use a
WKB calculation (see Supplemental Material [13]). This
requires knowledge of the potential shape. The parameters
of the optical potential are determined by precise measure-
ments of the level spacings in the potential. The final
parameter to determine the barrier height is fixed by the
measured tunneling time constant of two identical fermi-
ons (see [13]). The energies obtained from the tunneling
time constants of two distinguishable fermions are shown
in Fig. 5.

We compare these energies to the analytic theory for a
harmonic potential [10] (see Fig. 2). This theory needs two
input parameters, the coupling strength and the level spac-
ing. For the coupling strength we use gj"#i of our system
shown in Fig. 4(b). For the level spacing we use the energy
difference @!kcalc ¼ E0 � E1 ¼ 2�@� 743 Hz between

the ground and first excited state of the potential which

we calculate using the WKB method. With this approxi-
mation the energy obtained from the tunneling measure-
ments and the energy obtained from the analytic theory
[10] are the same at the CIR. For the Tonks regime we find
excellent agreement of the experimentally determined en-
ergy with the theoretical prediction for a harmonic trap.
Above the CIR the harmonic theory is not applicable
because the second excited state is not bound in our
potential. Additionally, we expect deviations for larger
energies due to the limited validity of the WKB approxi-
mation for energies close to the continuum threshold. A
more precise description could be achieved by adapting
the theory described in [10] to our nonharmonic potential
and by using a more accurate theory for the tunneling
process [20,21].
In summary, we have measured the interaction energy of

two distinguishable fermions as a function of the interac-
tion strength and identified the point of fermionization. The
good agreement between our results and theoretical pre-
dictions shows that our experiment has the capability to
simulate strongly correlated few-body quantum systems.
Using the experimental methods established in this work it
is straightforward to extend our studies to more complex
systems. Simply adding a third particle either in one of the
present spin states [22] or a different spin state [23,24]
allows us to study a highly nontrivial system where no
analytical solution exists. In a few-body system with de-
fined particle number and attractive interaction we could
investigate pairing phenomena and thus work towards
studying superfluidity in finite systems. This has already
been investigated in the context of nuclear physics [25]. By
dynamically changing the shape of the trapping potential
we could simulate a vast amount of different time-
dependent quantum systems. A feasible experiment would
be to periodically modulate the strength of the magnetic
field gradient. This would allow us to study ionizationlike
excitations in the strong-field regime [26] which have been
studied in ultrafast physics [27].
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