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We report on the condensation of bosons in the 4th band of an optical checkerboard lattice providing a

topologically induced avoided band crossing involving the 2nd, 3rd, and 4th Bloch bands. When the

condensate is slowly tuned through the avoided crossing, accelerated band relaxation arises and the zero

momentum approximately C4-invariant condensate wave function acquires finite momentum order and

reduced C2 symmetry. For faster tuning Landau-Zener oscillations between different superfluid orders

arise, which are used to characterize the avoided crossing.
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Topologically nontrivial band structures provide the
basis of intriguing forms of quantum matter such as high-
temperature superconductors, unconventional supercon-
ductors in heavy-fermion compounds, quantum Hall
systems, or the recently discovered topological semimetals
in semiconductors with strong spin-orbit coupling [1–4].
Topological classification of band structures and band
crossing points has been a topic of vibrant theoretical
research recently [5–10]. The unique possibilities to pre-
pare tailored periodic potentials in optical lattices [11,12]
have recently inspired numerous proposals to use them for
clean simulations of topological matter [13–18]. In the
lowest band artificial gauge fields may permit one to engi-
neer nontrivial topological features, however, at the cost of
significant experimental complexity [19]. In the higher
bands of two- or three-dimensional nonseparable band
structures, topological properties can be readily obtained
by an appropriate choice of the lattice symmetries.
Theoretical work has predicted that band relaxation can
be kept moderate for bosonic atoms excited to higher bands
[20,21], and recently condensates in the P and F bands of a
square optical latticewere reported [22,23] and investigated
theoretically [24]. A complementary effort in exciton-
polariton systems has led to a D-band condensate [25].

In this work, we combine the tunability of optical lattice
potentials with targeted condensate formation in an excited
band to implement and investigate a topologically induced
avoided band crossing. Extending techniques described
previously [22,23], we produce an optical lattice potential
with two classes of sites [denoted as A and B sites in
Fig. 1(a)] arranged as the black and white fields of a
checkerboard. In the xy plane the optical potential with
tunable parameters V0 � 0 and �V is given by

Vðx;y; ~�Þ��V0

4
j�ðeikxþ�xe

�ikxÞþei�ðeikyþ�ye
�ikyÞj2;

(1)

with ~� � ð�; �x; �yÞ and carefully measured quantities� ¼
0:98, �x ¼ 0:93, �y ¼ 0:87 (accounting for imperfect op-

tics in the experiment). The angle � can be adjusted to

better than �=200 by means of an interferometric optical
setup [26]. The effective well depth difference is defined as
�Vð�Þ��V0�ð1þ�xÞð1þ�yÞcosð�Þ, i.e., �Vð�=2Þ¼0.

In the z direction a weak harmonic potential is provided
giving rise to elongated tubular lattice sites.
We denote the Bloch bands as Bn, n 2 f1; 2; . . .g, or-

dered according to increasing energies. In Fig. 1(c) the
bands B2, B3, and B4 at the � point [cf. Fig. 1(b)], derived
from a two-dimensional band structure calculation for a
lattice with V0 ¼ 7:0Erec and perfect C4 symmetry [i.e.,
setting � ¼ �x ¼ �y ¼ 1 in Eq. (1)], are plotted against

�V. Here, Erec ¼ ð@kÞ2=2m is the recoil energy, m the
atomic mass, k ¼ 2�=�, and � ¼ 1064 nm. The plot
shows that at the critical value �V ¼ �Vc (¼ 6:1Erec for

FIG. 1 (color online). (a) The lattice comprises two classes of
sites with different well depth denoted by A and B. The gray
area denotes the Wigner-Seitz unit cell. (b) The first BZ with a
path marked connecting the �, X, and M points, respectively.
(c) Energies of the 2nd (B2), 3rd (B3), and 4th (B4) Bloch bands
plotted versus �V for a lattice with perfect C4 symmetry for
V0 ¼ 7:0Erec and �Vc ¼ 6:1Erec. The detail on the lower edge
shows a plot of these bands for �V ¼ �Vc within the 1st BZ
along the trajectory illustrated in (b). (d) The bands of (c) are
replotted for a lattice with weakly broken C4 symmetry for V0 ¼
7:8Erec and �Vc ¼ 6:1Erec. The details on the lower edge show
plots analogous to that shown in (c), however, for �V ¼ �Vc �
Erec. The (thin, gray) dash-dotted lines mark the energy of the
4th band at the � point.
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V0 ¼ 7:0Erec) all three bands become degenerate and the
B2 and the B4 band form a Dirac cone in the center of the
first Brillouin zone (BZ) with the locally flat B3 band
intersecting its origin. This can be seen in the detail on
the lower edge of Fig. 1(c) showing the involved bands
within the first BZ along a trajectory connecting the points
�, X,M, � of Fig. 1(b). For�V > �Vc (�V < �Vc) the B4

band (B2 band) separates, whereas B2 and B3 (B3 and B4)
remain degenerate, thus forming a topologically protected
quadratic band crossing point (TQB) [6] at the center of the
first BZ. This structure is robust against changes of�V and
V0 as long as the C4 symmetry is sustained.

In our experimental realization, due to technical imper-
fections accounted for by the value of ~� specified below
Eq. (1), the C4 symmetry of the lattice is weakly broken.
The lattice potential may be decomposed into a main
contribution with a perfectly C4-invariant unit cell and a
small perturbation with no rotation symmetry, which acts
to lift the degeneracies in Fig. 1(c), thus leading to an
avoided band crossing with an energy gap �E2;4 on the

order of a small fraction of Erec, as shown in Fig. 1(d). A
band calculation shows that @�E2;4=@V0 < 0:02, i.e., the
gap �E2;4 � 0:26Erec is nearly independent of V0. On the

left side of the anticrossing (�V < �Vc) the bands B3 and
B4 rapidly approach an approximately constant separation
�E3;4 � 0:13Erec, which is nearly independent of V0

(@�E3;4=@V0<0:002). Within the 1st BZ the energy

�E3;4 appears as the gap introduced into the TQB at

the � point. An analogous V0-independent gap �E2;3

arises for the bands B2 and B3 on the right side of the
anticrossing (�V >�Vc). The energy gaps have been
calculated according to the definition �En;mðV0Þ �
min�V2½�Vc�2Erec;�Vcþ2Erec�½Emð�V; V0Þ � Enð�V; V0Þ�,
with Enð�V; V0Þ denoting the energy of the nth band. The
robustness of these gaps (with sizes on the order of 10 nK)
against changes of V0 and �V indicate that, despite the
broken C4 symmetry, some topological character of the
bands appears to be preserved. A theoretical method (ex-
tending the Berry flux concept [6,27]) to quantify this
residual robustness is yet to be conceived. The details on
the lower edge of Fig. 1(d) show �XM-trajectory plots of
the bands within the first BZ away from the avoided cross-
ing at �V ¼ �Vc � Erec.

As the initial step in our experimental protocol we
produce a sample of about 105 rubidium atoms (87Rb) in
the F ¼ 2, mF ¼ 2 electronic ground state condensed in
the global minimum of the B4 band for a value �V ¼
�Vi � 9:0Erec ¼ �Vc þ 2:9Erec located on the right-
hand side of the avoided crossing in Fig. 1(d), i.e., where
the B4 band is well separated from all other bands. This
value is chosen in order to maximize the decoherence time
of the condensate fraction to about 26 ms, which corre-
sponds to a lifetime of the B4-band population of 45 ms.
For condensate formation (following Refs. [22,23]) a deep
ground state lattice (V0 ¼ 15Erec) is prepared with�V�0

such that only the deeper B sites are occupied and tunnel-
ing is suppressed. Then, �V is switched to �Vi, rendering
B sites more shallow than A sites, and V0 is reduced to
7:8Erec in order to allow for tunneling. Within 10 ms the
system condenses into the minimum of the B4 band and we
may subsequently tune �V to any final value of interest.
Figure 2 shows that in a wide range of values �V we

observe momentum spectra with sharp Bragg maxima,
resulting from the coherent condensate fraction residing
at the � point of the B4 band. Figures 2(a) and 2(c)
show the experimental observations for �V ¼ �Vi ¼
�Vc þ 2:9Erec and �V ¼ �Vc þ 9:9Erec, respectively.
Figures 2(b) and 2(d) present corresponding calculations
based upon single-particle Bloch functions using the po-
tential of Eq. (1), showing good agreement with respect to
the relative sizes of the higher order Bragg peaks. For
�V >�Vc, the Bloch function corresponding to the �
point of the B4 band comprises local 1s orbits in the
shallow wells and local 3s orbits (with one radial node)
in the deep wells. For values �V in the vicinity of �Vi [as
in 2(a) and 2(a)] the 1s orbits hold most of the population,
while the 3s orbits are only marginally populated. Hence,
the envelope of the momentum spectrum is mainly due to
the Fourier transform of the comparatively delocalized
Wannier function of the 1s orbit, such that only a few
higher order Bragg peaks appear. Larger values of �V
yield increased population of the 3s orbits. Because of
their larger momentum components, higher order Bragg
peaks become increasingly visible. This is more system-
atically studied in Fig. 2(e), which shows the �V depen-
dence of the populations of the Bragg peaks on the
descending diagonal in 2(d) indicated by the gray dashed
box. The corresponding calculation in Fig. 2(f) shows
striking agreement with the observations. For values of
�V >�Vc the B4 band is C4 invariant to very good
approximation with its global minimum at the � point. In

FIG. 2 (color online). Momentum spectra of the B4 band
condensate are shown in (a) and (b) for ð�V ��VcÞ=Erec ¼
2:9 and in (c) and (d) for ð�V ��VcÞ=Erec ¼ 9:9, respectively.
The experimental results in (a) and (c) are compared to calcu-
lations in (b) and (d). The �V dependence of the populations of
the Bragg peaks identified in the dashed black rectangle in (d) is
shown in (e) (experimental observations) and (f) (calculations).
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this case the zero momentum Bragg peak is by far the most
populated. If we tune �V to values below �Vc, thus
passing the avoided band crossing, significant oscillations
of the Bragg-peak populations arise, which are discussed
below.

In Fig. 3 we study the collision induced relaxation of the
B4-band population. After condensate formation, �V is
adjusted to some desired value within 200 �s and the
atoms are held in the lattice for a variable time. Finally,
the lattice potential is adiabatically turned off, and the
atoms are allowed to expand for 30 ms. This provides us
with images of momentum space, in which the population
of the nth band is mapped into the nth BZ. In 3(a) an
example is shown for ð�V ��VcÞ=Erec ¼ 4:5, where the
effect of the avoided crossing is not relevant. Initially (for
20 �s holding time), mainly the 4th BZ is populated, with
a significant fraction of the atoms residing at the conden-
sation points (� @k;�@k). As seen in the pictures for larger
holding times, the population of the 4th band directly
decays into the 1st band (with approximately exponential
time dependence), while the 2nd and 3rd BZs are not
markedly involved. Only in the vicinity of the avoided
crossing, a more complex decay dynamics arises with the
2nd and 3rd bands initially accumulating significant pop-
ulations before finally the 1st BZ is refilled. This becomes
visible in 3(b) (showing the relaxation times for the 4th and
the 1st bands versus �V), where close to the anticrossing
(�V � �Vc) the decay of the 4th band (blue disks) is faster
than the refilling of the 1st band (black diamonds). The plot
shows a pronounced resonance around �V ¼ �Vi with
notably long lifetimes above 40 ms. This may be qualita-
tively explained by the observation that around �Vi most
of the atomic population resides in the local 1s orbits of the
shallow wells, where it is protected from collisional decay,
because locally no state with lower energy is available.
This assertion is supported by plotting the integrals

Inð�VÞ ¼
R
� d2r�4�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
� d2r�2

4

R
� d2r�2

n

q ; (2)

where� denotes the unit cell in configuration space, �n �
j�nj2, and �n, n 2 f1; 2; 3; 4g, denotes the Bloch function
of the nth band for zero quasimomentum calculated for the
optical potential in Eq. (1). These integrals measure the
spatial correlations of the particle densities in the 4th and
the nth bands at the � point. As shown in 3(b) the maximal
lifetime of the 4th band arises, where these overlap inte-
grals are small. The observation in 3(b) that, apart from the
vicinity of the avoided crossing, direct decay to the 1st
band appears as the dominant process corresponds to the
fact that I1 displays the largest decrease near the relaxation
time maximum.
As already indicated in Fig. 2, when we drive the con-

densate across the avoided crossing at �V ¼ �Vc, we
observe momentum spectra with oscillating populations
of the Bragg maxima. For small band gaps of less than
about half a recoil energy, the rapid band relaxation occur-
ring near the avoided crossing [cf. Fig. 3(b)] limits us to
ramping times below a millisecond, such that we operate in
the nonadiabatic regime, where significant Landau-Zener
oscillations are to be expected. To access the adiabatic
regime, we had to broaden the band gap to 0:8Erec by
introducing larger deviations from C4 symmetry. In this
case, we can maintain most atoms in the 4th band over the
entire anticrossing. As the anticrossing is passed [with
decreasing �V, i.e., from right to left in Fig. 1(d)] the
condensate wave function undergoes a dramatic change.
While on the right side of the anticrossing a C4-invariant
momentum spectrum with a leading zero momentum peak
is observed, similar to that shown in Fig. 2(a), on the left
side of the anticrossing the spectrum acquires finite mo-
mentum character and reduced C2 symmetry with the
leading Bragg orders arising at �ð1;�1Þ@k, as shown in
Fig. 4(a) for ð�V � �VcÞ=Erec ¼ �1:3. The rotational
symmetries seen in the momentum spectra reflect those
of the B4 band calculated for the respective values of �V.
Correspondingly, on the right side of the anticrossing the
calculated zero momentum Bloch function displays ap-
proximate C4 symmetry with local 3s orbits and local 1s
orbits in the deep and shallow wells, respectively, while on
the left side, the deep wells comprise local 2px�y orbits

aligned along the ð1;�1Þ direction.
The nonadiabatic case was studied for �E2;4 � 0:26Erec

corresponding to 25 nK. After preparation of the conden-
sate at �V ¼ �Vi, within 400 �s we tune to values �V <
�Vc on the left side of the avoided crossing, and record the
time evolution of the momentum spectrum. An example
for ð�V ��VcÞ=Erec ¼ �3:0 is shown in Fig. 4(b), where
the visibility [28] of the �ð1;�1Þ@k Bragg peaks (blue
disks and green triangles) and that of the ð0; 0Þ@k peak (red
squares) are plotted versus the holding time after the jump
over the anticrossing. We observe significant oscillations,

FIG. 3 (color online). Band mapping plots recorded for
ð�V ��VcÞ=Erec ¼ 4:5 and holding times 20 �s, 20 ms,
100 ms. In the lower right corner a map of the theoretical BZs
1; 2; 3; 4 is plotted. The black circles indicate the observed
condensation points at the energy minima of the B4 band, which
connect to the center of the 1st zone via reciprocal lattice vectors
(white arrow). (b) The decay time of the 4th (blue disks) and the
refilling time of the 1st band (black diamonds) are plotted versus
�V. The black line plots show the scaled overlap integrals I1
(solid), I2 (dashed), I3 (dash-dotted) defined in Eq. (2).
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which can be qualitatively modeled as a beat between the
single-particle Bloch functions of the 4th and 2nd band at
the � point. A closer inspection shows that the frequency
spectra of these oscillations comprise small second har-
monic components as is illustrated for the ð�1; 1Þ@k peak
in Fig. 4(c), which is expected as a result of the nonline-
arity introduced by collisional interactions. The second
harmonic contributions give rise to slightly increased (de-
creased) curvatures in the minima (maxima) of the oscil-
lations in Fig. 4(b). Collisional relaxation is also
responsible for the observed decay of the visibility. If an
additional lattice potential along the z direction is applied
in order to increase the collision energy per particle, we
find correspondingly decreased decay times. Evaluation of
curves similar to those in Fig. 4(b) for variable �V yields
the blue disks in Fig. 4(d). The solid trace repeats the
energy difference between the 4th and the 2nd band from
Fig. 1(d) using the measured value of ~� specified below
Eq. (1). Despite neglecting collisions, the calculations
without use of fitted parameters well approximate the
observations. The small deviations of the observed fre-
quencies towards values slightly below the single-particle
calculations cannot be reduced by choosing different val-
ues for �, �x, �y in Eq. (1), but rather indicate the effect of

collisions. A simplified nonlinear Landau-Zener model
with the three zero momentum Bloch functions of the

band crossing in Fig. 1(c) as basis modes, a 3	 3 coupling
matrix adjusted to reproduce the single-particle anticross-
ing in Fig. 1(d), and a collision matrix accounting for the
collision processes among the three basis modes confirms
the observed trend, however, without yielding quantitative
agreement.
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FIG. 4 (color online). (a) Momentum spectra (left, observa-
tion; right, calculation) on the left side of the anticrossing
(�V ¼ �Vc � 1:3Erec). A sufficiently large gap (� 0:8Erec)
was adjusted, in order to prevent Landau-Zener dynamics.
(b) Landau-Zener dynamics for a gap of � 0:26Erec. The visi-
bility of the �ð1;�1Þ@k Bragg peaks (blue disks and green
triangles) and that of the ð0; 0Þ@k peak (red squares) are plotted
versus the holding time after rapid tuning over the anticrossing to
ð�V ��VcÞ=Erec ¼ �3:0. (c) Fourier spectrum of the oscillat-
ing ð�1; 1Þ@k peak with first and second harmonic components
indicated by black arrows. (d) Blue disks denote the first har-
monic frequencies derived from plots as in (b). The solid line
shows the calculated energy difference between the 4th and the
2nd band.
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