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Growth of complex dendritic fingers at the interface of air and a viscous fluid in the narrow gap between

two parallel plates is an archetypical problem of pattern formation. We find a surprisingly effective means

of suppressing this instability by replacing one of the plates with an elastic membrane. The resulting fluid-

structure interaction fundamentally alters the interfacial patterns that develop and considerably delays the

onset of fingering. We analyze the dependence of the instability on the parameters of the system and

present scaling arguments to explain the experimentally observed behavior.
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Flow-induced elastic deformations underpin a wide va-
riety of natural processes, from the geophysics of laccolith
formation [1] to the physiology of pulmonary airway re-
opening [2,3]. In the latter the elastic walls of the airways
interact with a free-surface flow, yielding complex and
sometimes unexpected behavior [4]. Similar fluid-structure
interaction arises in industrial applications, where elastic
boundaries are introduced to control processes such as roll
coating [5], or change the fluid motion in porous media [6].
In this Letter, we study liquid displacement by air injection
into a Hele-Shaw cell and report the suppression of the
well-known viscous fingering instability, when the upper
boundary of the cell is replaced by an elastic membrane
(Fig. 1).

Viscous fingering in rigid-walled Hele-Shaw cells is an
archetype for front-propagating, pattern forming phe-
nomena [7–9]. It arises when the fluid is injected at a
sufficiently fast rate so that viscous forces exceed surface
tension forces, causing the axisymmetric interface between
the two fluids to become linearly unstable to nonaxisym-
metric perturbations. The nonlinear growth of this insta-
bility causes the development of distinct fingers whose tips
subsequently become unstable themselves, leading to so-
called tip splitting. Repeated tip splitting combined with
the arrest of the interface after the passage of the finger tips
ultimately creates a complex dendritic pattern as shown in
Fig. 1(c). However, if one of the bounding plates is re-
placed by a latex membrane, we find that the instability is
suppressed and the interface remains axisymmetric
[Fig. 1(a)] for values of the injection rate at which the rigid
system already exhibits strongly nonlinear interfacial
growth [Fig. 1(c)]. The critical injection rate beyond which
the axisymmetrically expanding interface becomes un-
stable [Fig. 1(b)] is considerably higher than the corre-
sponding value for the rigid system. Wall elasticity not
only affects the onset of the instability but also has a
strong impact on the structure of the fingers that develop

subsequently as illustrated in Fig. 1(b). In the elastic cell
the entire interface propagates so that a large number of
very short fingers develop, which are reminiscent of the
printer’s instability [10], and contrast with the character-
istic dendritic pattern shown in Fig. 1(c). Hence, elastic
boundaries offer a novel way to control and suppress non-
linear pattern formation in Hele-Shaw cells, which is con-
siderably more effective than the use of non-Newtonian
fluids [11,12], geometric perturbations [13], and the non-
linear control of the injection rate, either by itself [14,15]
or in combination with the controlled separation of the
(rigid) bounding plates [16].
We performed a series of experiments in the elastic-

walled Hele-Shaw cell shown schematically in Fig. 1(d).
The bottom boundary was a 15 mm thick float-glass plate,
accurately levelled to within 0.1�, and the top boundary
was a latex sheet (Supatex) of uniform thickness in the
range 0:33� 0:01 � h � 0:97� 0:01 mm [17], with a
measured Young’s modulus of E ¼ 1:44� 0:05 MPa. A
second latex sheet with a circular cutout of diameter
350 mm was used to separate the two boundaries, and
set the initial depth of the cell to values in the range
0:46� 0:01 � b0 � 0:79� 0:02 mm [18].
Prior to each experiment, the cell was filled with silicone

oil (Basildon Chemicals Ltd, � ¼ 1:04 kgm�1 s�1 at
20:3 �C), which wets both glass and latex. The injected oil
displaced the less viscous air that initially filled the cell, thus
producing a stable, radially expanding oil layer. Placing a
second glass plate on top of the bounding elastic membrane
during the filling procedure ensured that the elastic mem-
brane remained undeformed until the start of each experi-
ment, and that the initial thickness of the fluid layer was set
uniformly to b0. A small circular air bubble of approxi-
mately 10mmdiameter was injected through the inlet at the
start of every experiment to impose controlled initial con-
ditions. The flow source was a compressed nitrogen cylin-
der, whose flow ratewas set manually by a fine needle valve
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in the range 50 � Q � 1300 cm3 min�1, and monitored
accurately using a mass airflow meter (Red-Y Smart
Meter PCU1000, Icenta Controls Ltd) to remain constant
to within �0:5% of its set value. The flow rate set prior to
each experiment could be replicated to within 3%. With
these flow parameters, the load on the upper boundary was
insufficient to cause buckling instabilities of the latexmem-
brane. A three-way pneumatic solenoid valve was used to
switch the gas flow from exiting into the atmosphere to
entering the cell at the start of each experiment. We either
monitored the time evolution of the backlit free surface by
recording top view movies of the pattern formation with a
CCD camera (1360� 1024 pixels) at a rate of 7.5 frames
per second, or measured the sheet inflation by projecting a
line onto the elastic upper boundary with a video projector
positioned vertically above the cell, and recording its de-
formationwith a still camera (NikonD2X/s) oriented at 60�
with respect to the light sheet.

In the elastic cell, the interface displaces the viscous
liquid at a lower speed than in the rigid configuration
because the imposed load causes the sheet to inflate,

resulting in a nontrivial fluid-structure interaction problem.
We measured the time evolution of the average radius of
the expanding bubble and found that it scaled with time as
hri � t0:37 for all values of the experimental parameters
[see Fig. 2(a)]. To explain this behavior we follow the
approach taken in [3] and predict the evolution of hri by
defining two distinct regions on either side of the bubble
interface [see Fig. 2(b)], and matching the slopes of the
deformed sheet obtained in regions I and II at the interface.
At any time t, the volume of the injected air is Qt. The
deformation measurements of the membrane showed its
shape to be approximately self-similar and hri � H � b0,
so thatQt� hri2H, whereH is the vertical displacement of
the elastic sheet at its center. Therefore, the membrane
slope in region II varies like �II �Qt=hri3. The vertical
displacement of the elastic sheets used in this study is
largest in region II, reaching up to 5.5% of the bubble
diameter at the point of maximum deflection [see
Fig. 2(b)]. For vertical displacements >1% in an empty
elastic cell with wall thicknesses [17], both membrane
inflation experiments and numerical simulations using
the multiphysics finite-element library OOMPH-LIB [19]
indicate that the membrane response is nonlinear and
strongly affected by self-induced tension. However, the
deformation of the membrane ahead of the interface (re-
gion I) is considerably smaller, because the membrane is
constrained by lubrication forces in the viscous layer.
Hence, we can assume a linear elastic response of the
membrane in region I, so that its small transverse (out-
of-plane) displacement b, subject to the distributed load p,

FIG. 2 (color online). (a) Dependence of scaled hri (in units of
mm s�3=8) on t (in s), both on a logarithmic scale, for different
experimental runs (h and b0 are given in [17,18], respectively;
units of Q are cm3 min�1). (b) Displacement of membrane c for
separator b and Q ¼ 50 cm3 min�1 at t ¼ 69 s from the start of
the experiment.

FIG. 1 (color online). (a)–(c) Top view of the front propagation
in a radial Hele-Shaw cell in which a growing air bubble
displaces viscous fluid that occupies the narrow gap between
two parallel plates. Fluids are injected through a small nozzle
with an internal diameter of 2.28 mm embedded in a brass fitting,
which is mounted flush with the lower bounding plate of the cell
and appears as the central black circle. Four successive positions
of the interface are shown in each image, with the smallest
interface recorded t ¼ 0:4 s after air injection started: (a) elastic
cell with membrane a; see [17], separator b; see [18], Q ¼
145 cm3 min�1, �t ¼ 4:28 s; (b) same elastic cell as in (b)
with Q ¼ 1250 cm3 min�1, �t ¼ 0:71 s; (c) rigid cell, Q ¼
145 cm3 min�1, �t ¼ 0:57 s. (d) Schematic diagram of the
experimental apparatus.
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is given by p ¼ Kr4b, where K ¼ Eh3=12ð1� �2Þ is the
bending stiffness of the membrane and � ’ 0:5 is Poisson’s
ratio. Furthermore, we assume that the relation between the
depth-averaged fluid velocity v and the pressure is given

by the lubrication equation v ¼ � b2

12�rp. Balancing

bending and lubrication pressures in this region gives the
velocity scaleU� Kb30=�L5. By estimatingU as hri=t, we
predict the scaling for the slope of the sheet in this region

as �I � b0=ðKb30t=�hriÞ1=5. Matching the slopes at the

interface, �I � �II, gives

hri � ðKQ5=b20�Þ1=16t3=8 � t0:375: (1)

Given the simplicity of our model, the predicted scaling
exponent is in remarkable agreement with the experimental
measurements shown in Fig. 2(a); the slight spread of the
data in this figure is likely to be due to the many secondary
effects that we ignored in our analysis, such as nonlineari-
ties in the behavior of the sheet.

In order to determine the onset of instability, we pro-
cessed experimental images using Matlab edge detection

routines to extract the length of the interface, ~‘, and the
length of its convex envelope, ‘, as shown in Fig. 3(a). In

the absence of an instability, �‘ ¼ ~‘� ‘ ¼ 0 [Fig. 3(b)].
As the bubble expands, the unstable interface deforms into
fingers that grow, saturate, and each split into two second-
generation fingers; a process that repeats itself leading to a
continual increase in the number of fingers. The excess
perimeter, �‘ > 0, is a measure of instability, which com-
bines information about the depth and number of fingers.
An example of the variation of �‘ with the mean radius hri
is shown in Fig. 3(b). Following the onset of instability, �‘

initially increases up to a maximum value, and then decays
as the bubble expands further. This is because the flow rate
Q is held constant, so that the interface decelerates as it
expands. Hence, the interface always restabilizes for suffi-
ciently large values of hri, for which the interface speed
falls below its critical threshold for instability. Even though
the maximum value of �‘ varies significantly between
experiments, �‘ reaches its maximum value at the same
hri; see Fig. 3(b). The variations between experiments are a
direct result of the system’s sensitivity to the initial con-
figuration, which was inevitably slightly nonaxisymmetric.
Hence, the interface did not display a perfect spatially
periodic pattern during the initial stages of the instability,
and the unstable interface therefore always comprised
fingers at different stages of their evolution. The observed
variability in �‘ in Fig. 3(b) results from different distri-
butions of developing and splitting fingers at given hri in
successive experimental runs. Because of this variability,
five experimental runs were performed for each set of
parameters. The averaged depth of the fingers, hdi, was
determined by counting the number N of fingers in the
pattern [20] as illustrated in Fig. 3(a). Assuming that the
depth of the finger provides the main contribution to the
excess perimeter as shown in Fig. 3(c), we define hdi ¼
�‘=ð2NÞ. We then characterized the growth of the insta-
bility by comparing hdi at average radii hri ¼ 4 cm and
hri ¼ 5 cm, which covered the region in which the insta-
bility tended to grow most rapidly [see Fig. 3(b)], and
define the parameter�¼hdiðhri¼5 cmÞ�hdiðhri¼4 cmÞ.
The variation of�withQ for each elastic sheet is shown

in Fig. 5. For low values of Q, we have � ¼ 0, indicating
stable interfaces such as the one shown in Fig. 4(a). OnceQ
exceeds a certain threshold Qc, � grows approximately
linearly with Q [Fig. 4(b) and 4(c)], until the instability
saturates [Figs. 4(d) and 4(e)]. We fit the growth region
using linear least squares and determine the critical flow
ratesQc by extrapolating this fit for each data set, as shown
in Fig. 5. The rate at which the fingers grow increases with

FIG. 3 (color online). (a) Typical image analysis procedure—
the corresponding experimental run is presented in Fig. 4(j).
(b) The excess perimeter �‘ ¼ ~‘� ‘ as a function of the average
interfacial radius hri for membrane a, see [17], separator b, see
[18], and several experimental runs with injection rates Q ¼
200 cm3 min�1 (‘‘stable’’) and Q ¼ 700 cm3 min�1 (‘‘un-
stable’’). (c) Close-up of fingers 7 and 8 from (a) with the
schematics for defining the depth d.

FIG. 4. Superimposed snapshots of the interface when hri ¼
4 cm and hri ¼ 5 cm. First row: the variation in the typical top
view for membrane h ¼ 0:69� 0:02 mm, b0 ¼ 0:56�
0:02 mm, and injection flow rates 75 cm3 min�1 (a),
200 cm3 min�1 (b), 500 cm3 min�1 (c), 700 cm3 min�1 (d),
and 900 cm3 min�1 (e); second row: the variation in the typical
top view for Q ¼ 400 cm3 min�1, b0 ¼ 0:56� 0:02 mm, for
sheet thicknesses given in [17] increasing from left to right.
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the membrane thickness, with the fingers being deeper and
saturating faster for larger h [see Figs. 5 and 4(f)–4(j)].
This limited the range of membrane thicknesses for which
the onset could be reliably determined with the chosen
method to that shown in Fig. 5. Another series of experi-
ments was performed to investigate the effect of variations
of the initial fluid depth b0 on Qc. Results are presented in
Fig. 6 which shows that Qc � K�0:30�0:05 [Fig. 6(a)] and
Qc � b1:72�0:14

0 [Fig. 6(b)]. These scalings were deter-

mined from least-square power-law fits to the experimental
data.

To explain these scalings we recall that destabilizing
viscous forces and restoring bending forces are the domi-
nant effects in the system’s behavior, and now examine the
length scales on which they act. Suppression of the fluid-
mechanical instability by the deformation of the membrane
requires the length scale Lb of the bending deformation to
be smaller than the viscous length scale Lv. Lubrication
theory gives Lv � Pb20=U�. Using the equation for the

small transverse displacement of the membrane we esti-

mate that the bending forces act on a length scale Lb �
ðKb0=PÞ1=4. By balancing these two length scales (Lb �
Lv � L), and considering that at fixed radius from the
injection point the velocity of the propagating interface is
proportional to Q, we obtain the scaling

Qc � K�1=4b7=40 P5=4��1 (2)

for the onset of instability. The exponents on K and b0 are
in excellent agreement with our experimental findings in
Fig. 6 which implies the surprising result that at the onset
of instability P is approximately independent of K and b0.

To summarize, we have shown that elastic boundaries
are surprisingly effective in suppressing viscous fingering
in a Hele-Shaw cell. The onset of instability is delayed
significantly because the membrane deformations reduce
destabilizing pressure perturbations ahead of the propagat-
ing interface. Experimental findings are strongly supported

with the scaling arguments based on a bending model for
the deformation of the elastic sheet and lubrication theory
for the fluid flow. Similar mechanisms operate in a wide
range of fluid-structure interaction problems [1–6].
Therefore, development of more detailed quantitative pre-
dictions for our system could directly benefit a number of
practical applications. This will require the careful consid-
eration of both nonlinear deformations of the sheet in the
bubble region (region I) and matching boundary conditions
at the interface. Such work is on its way.
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