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Fractal decimation reduces the effective dimensionality D of a flow by keeping only a (randomly

chosen) set of Fourier modes whose number in a ball of radius k is proportional to kD for large k. At the

critical dimension Dc ¼ 4=3 there is an equilibrium Gibbs state with a k�5=3 spectrum, as in V. L’vov

et al., Phys. Rev. Lett. 89, 064501 (2002). Spectral simulations of fractally decimated two-dimensional

turbulence show that the inverse cascade persists belowD ¼ 2 with a rapidly rising Kolmogorov constant,

likely to diverge as ðD� 4=3Þ�2=3.
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In theoretical physics a number of results have been
obtained by extending the dimension d of space from
directly relevant values such as 1, 2, 3 to noninteger values.
Dimensional regularization in field theory [1] and the
4� � expansion in critical phenomena [2] are well-known
instances. For this, one usually expands the solution in
terms of Feynman diagrams, each of which can be analyti-
cally continued to real or complex values of d. The same
kind of extension can be carried out for homogeneous
isotropic turbulence but a severe difficulty appears then
for d < 2: the energy spectrum EðkÞ can become negative
in some band of wave numbers k, so that this kind
of extension lacks probabilistic realizability [3].
Nevertheless, in Ref. [4], henceforth cited as LPP, it is
argued that, should there exist an alternative realizable way
of doing the extension below dimension two in which the
nonlinearity conserves energy and enstrophy, then an in-
teresting phenomenon—to which we shall come back—
should happen in dimension 4=3.

For diffusion and phase transitions there is a very differ-
ent way of switching to noninteger dimensions, namely, to
reformulate the problem on a fractal of dimension D (here
a capital D will always be a fractal dimension) [5]. Are we
able to do this for hydrodynamics? Implementing mass and
momentum conservation on a fractal is quite a challenge
[6]. We discovered a new way of fractal decimation in
Fourier space, appropriate for hydrodynamics. Since,
here, we are primarily interested in dimensions less than
two, we shall do our decimation starting from the standard
d ¼ 2 case.

The forced incompressible Navier-Stokes equations for
the velocity field can be written in abstract notation as

@tu ¼ Bðu; uÞ þ f þ�u; (1)

Bðu; uÞ ¼ �u � ruþ rp; � ¼ �r2; (2)

where u stands for the velocity field uðx1; x2; tÞ, f for the
force fðx1; x2; tÞ, p is the pressure and � the viscosity. The
velocity u is taken in the space of divergenceless velocity

fields which are 2� periodic in x1 and x2, such that
uðt ¼ 0Þ ¼ u0. Now, we define a Fourier decimation op-
erator PD on this space of velocity fields:

If u ¼ X
k2Z2

eik�xûk; then PDu ¼ X
k2Z2

eik�x�kûk: (3)

Here, �k are random numbers such that

�k ¼
�
1 with probability hk
0 with probability 1� hk;

k � jkj: (4)

To obtain D-dimensional dynamics we choose

hk ¼ Cðk=k0ÞD�2; 0<D � 2; 0<C � 1; (5)

where k0 is a reference wave number; here C ¼ k0 ¼ 1.
All the �k are chosen independently, except that �k ¼ ��k

to preserve Hermitian symmetry. Our fractal decimation
procedure removes at random—but in a time-frozen
(quenched) way—many modes from the k lattice, leaving
on average NðkÞ / kD active modes in a disk of radius k.
The randomness in the choice of the decimation will be
called the disorder.
Observe that PD is a projector, that it commutes with

the viscous diffusion operator � and that it is self-adjoint
for the energy (L2) norm, defined as usual as kuk2 �
ð1=ð2�Þ2ÞR juðxÞj2d2x, where the integral is over a 2��
2� periodicity square. The conservation of energy (by
the nonlinear term) for sufficiently smooth solutions of
the Navier-Stokes equation can be expressed as
ðu; Bðu; uÞÞ ¼ 0, where ðu;wÞ� ð1=ð2�Þ2ÞRuðxÞ �wðxÞd2x
is the L2 scalar product.
The decimated Navier-Stokes equation, written for an

incompressible field v, takes the following form

@tv ¼ PDBðv;vÞ þ PDf þ PD�v: (6)

The initial condition is v0 � vðt ¼ 0Þ ¼ PDu0. Thus, at
any later timePDv ¼ v. Energy is again conserved; indeed
ðv; PDBðv;vÞÞ ¼ 0, as is seen by moving the self-adjoint
operator PD to the left hand side of the scalar product and
using PDv ¼ v. For enstrophy conservation, take the curl
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of (1); the quadratically nonlinear term in the vorticity
equation is then Bvortð!;!Þ � �u � r!, where u is ex-
pressed in terms of ! by Biot–Savart. The relation
ð!;Bvortð!;!ÞÞ ¼ 0 expresses enstrophy conservation. In
the decimated case, the proof of enstrophy conservation is
identical to that for energy conservation with B replaced by
Bvort.

If, in addition to decimation, we apply a Galerkin trun-
cation which kills all the modes having wave numbers
beyond a threshold KG, the surviving modes constitute a
dynamical system having a finite number of degrees of
freedom. Such truncated systems with no forcing and no
viscosity have been studied by Lee, Kraichnan and others
[8]. Using suitable variables related to the real and imagi-
nary parts of the active modes, the dynamical equations
may be written as _y� ¼ P

��A���y�y�.

For the purely Galerkin-truncated (not decimated) case
it is well known that the above dynamical system satisfies a
Liouville theorem

P
�@ _y�=@y� ¼ 0 and thus conserves

volume in phase space. This in turn implies the existence
of (statistically) invariant Gibbs states for which the proba-

bility is a Gaussian, proportional to e�ð�Eþ��Þ, where
E ¼ P

kjûkj2 is the energy and � ¼ P
kk

2jûkj2 is the ens-
trophy. Such Gibbs states, called by Kraichnan absolute
equilibria, play an important role in his theory of the two-
dimensional (2D) inverse energy cascade [9]. If we now
combine inviscid, unforced Galerkin truncation and deci-
mation, it is easily checked that the Liouville theorem still
holds, provided the decimation preserves Hermitean sym-
metry. For such Gibbs states, and any active mode (�k ¼
1), one easily checks that the mean square energy hjukj2i ¼
C0=ð�þ �k2Þ, where C0 > 0 does not depend on k. The
corresponding energy spectrum is the mean energy EðkÞ of
modes having a wave number between k and kþ 1. Up to
fluctuations of the disorder, the number of active modes in
such a shell is OðkD�1Þ. Thus,

EðkÞ ¼ kD�1

�þ �k2
; �> 0; � >��; (7)

where various positive constants have been absorbed into a
new definition of � and �. An instance is enstrophy
equipartition: � ¼ 0 (all the modes have the same ens-
trophy), for which the energy spectrum is EðkÞ / kD�3. As
observed in LPP, this equilibrium spectrum coincides with

the Kolmogorov 1941 k�5=3 spectrum at the critical dimen-
sionDc ¼ 4=3. Note that such Gibbs states are only condi-
tionally Gaussian, for a given disorder. Otherwise, they are
highly intermittent, since a given high-k mode will be
active only in a small fraction of the disorder realizations.
We also note that similar phenomena have been observed
in shell models [10].

The form (7) of the D-dimensional absolute equilibria
also allows for the kind of Bose condensation in the gravest
modes (here, those with unit wave number) found by
Kraichnan for 2D turbulence. For this the ‘‘inverse

temperature’’ � must be taken negative, close to its mini-
mum realizable value ��. The arguments used by

Kraichnan to predict an inverse Kolmogorov k�5=3 energy
cascade for high-Reynolds number 2D turbulence with
forcing near an intermediate wave number kinj carry over

to the decimated case with D< 2. In particular the con-
servation of enstrophy blocks energy transfer to high wave
numbers. This in itself does not imply that the energy will
cascade to wave numbers smaller than kinj, producing a

k-independent energy flux: it might also linger around and
accumulate near kinj.

It is now our purpose to show that for 4=3<D � 2,

when the energy spectrum is prescribed to be EðkÞ ¼ k�5=3

over the inertial range, there is a negative energy flux �E,
vanishing linearly with D� 4=3 near the critical dimen-
sion Dc ¼ 4=3. For this we shall assume that a key feature
of the two-dimensional energy cascade carries over to
lower dimensions, namely, the existence of scaling solu-
tions with local (in Fourier space) dynamics, so that the
energy transfer is dominated by triads of wave numbers
with comparable magnitudes. Let us now decompose the
energy inertial range into bands of fixed relative width, say
one octave, delimited by the wave numbers 20, 21, 22, etc.
Because of locality there is much intraband dynamics but,
of course, interband interactions are needed to obtain an
energy flux. Pure intraband dynamics (with no forcing
and dissipation) would lead to thermalization. For dimen-
sional reasons, thermalization and interband transfer have
the same time scale, namely, the eddy turnover time

k�3=2E�1=2ðkÞ.
To get a handle on the combined intraband and interband

dynamics we perform a thermodynamic thought experi-
ment in which we artificially separate them in time. In the

first phase, starting from a k�5=3 spectrum we prevent the
various bands from interacting by introducing (impene-
trable) interband barriers at their edges. In each band, the
modes will then thermalize and achieve a Gibbs state with
a spectrum (7) in which � and � are determined by the
constraints that the total band energy and enstrophy be the
same as for the �5=3 spectrum. For example, in the first
band this gives the constraints (n ¼ 0 for the energy and
n ¼ 2 for the enstrophy)

Z 2

1
dkkn½kD�1=ð�þ �k2Þ � k�5=3� ¼ 0; (8)

a system of two transcendental equations for the parame-
ters � and �, which we solved numerically. ForD ¼ 2, the
corresponding absolute equilibrium spectrum, obtained by
substituting these values in (7), is shown in Fig. 1, together
with the�5=3 spectrum. The two spectra are very close to
each other. Specifically, in 2D the absolute equilibrium
spectrum exceeds the �5=3 spectrum by about 10% at
any lower band edge and by about 5% at any upper band
edge. Of course, as we approach the critical dimension
Dc ¼ 4=3 the discrepancy goes to zero and can easily be
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calculated perturbatively in D� 4=3. In the second phase
of our thought experiment, we consider two adjacent
bands, e.g., [20, 21] and [21, 22] that have thermalized,

starting from the same k�5=3 spectrum and we remove the
interband barrier at 21. A new thermalization leads then to
an absolute equilibrium in the band [20, 22], which again,
can be easily calculated. In 2D, before the removal, the
energy between 20 and 21 was 0.555. After the new ther-
malization, this energy is found to have increased by
0.005 51. Thus energy has been transferred from the upper
band [21, 22] to the lower band [20, 21]. Close toDc ¼ 4=3,
we can again apply elementary perturbation techniques and
obtain for the upper-to-lower-band energy transfer
0:009ðD� 4=3Þ to leading order. Our thermodynamic
thought experiment thus suggests that the energy flux
vanishes linearly with D� 4=3, being negative above the
critical dimension, which implies an inverse cascade.
Variants of this thought experiment involving more bands
give similar results. In the K41 inertial range, the energy

spectrum and the energy flux �E are related by EðkÞ ¼
CKolj�Ej2=3k�5=3, where CKol is the Kolmogorov constant;

thus the Kolmogorov constant diverges as ðD� 4=3Þ�2=3.
A closure calculation of eddy-damped quasinormal
Markovian (EDQNM) type also predicts a divergence
with a �2=3 exponent.

Kraichnan’s ideas about the inverse cascade in 2D got
growing support a few years later from direct numerical
simulations, which eventually achieved the resolution of
32 7682 modes [11]. As to our idea about the robustness of
the inverse cascade and the growth of the Kolmogorov
constant when lowering the dimension D, some support
can be already provided, using aD-dimensional decimated
variant of spectral direct numerical simulation: First one
generates an instance of the disorder, that is the list of
active and inactive Fourier modes; then, one applies stan-
dard time marching algorithms and, at each time step, sets
to zero all inactive modes. In addition to the well-known
difficulties of simulating 2D turbulence (see, e.g., [11] and
references therein), there are new difficulties.

A few words about the numerical implementation. We
integrate the decimated Navier-Stokes Eq. (6) in vorticity
representation. Instead of using as damping the viscous
operator� ¼ �� (where� � r2 is the Laplacian), we use

� � ���þ2 ����2; � > 0; � > 0; (9)

whose Fourier symbol is ��k4 ��k�4. In other words,
we use hyperviscosity to avoid wasting resolution on the
enstrophy cascade and large-scale friction to prevent an
accumulation of energy on the gravest modes and thus
allow eventual convergence to a statistical steady state.
The results reported here have a resolution of N ¼ 3072
collocation points in the two coordinates. Time marching is
done by an Adams-Bashforth scheme combined with ex-
ponential time difference (ETD) [12] with a time step
between 5� 10�5 and 10�4, depending on dimension.
Energy injection at the rate " is done in a band of width
three around kinj ¼ 319 by adding to the time rate of

change of the Fourier amplitude of the vorticity a term
proportional to the inverse of its complex conjugate [13].
This allows a k-independent and time-independent energy
injection. AsD is decreased the amplitude of this forcing is
increased to keep the total energy injection on active
modes fixed at " ¼ 0:01. The damping parameters are
� ¼ 10�11 and � ¼ 0:1. Runs are done concurrently for
different values of D on a high-performance cluster at the
Weizmann Institute and take typically a few thousand
hours of CPU per run to achieve a statistical steady state.
Energy spectra are obtained by angular averages over

Fourier-space shells of unit width

EðKÞ � 1

2

X
K�k<Kþ1

jv̂ðkÞj2; (10)
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FIG. 1 (color online). The k�5=3 spectrum (continuous) and the
associated 2D absolute equilibrium with the same energy and
enstrophy in the first octave (dashed).
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FIG. 2 (color online). Compensated steady-state spectra for
D ¼ 2:0, 1.9, 1.8, 1.7, 1.6, 1.5 from bottom to top with spikes
at injection. The inset shows the dependence on D of the plateau
of the compensated spectra, as an average over the interval
between vertical dashed lines (with standard deviation error
bars).
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where the v̂ðkÞ are the Fourier coefficients of the solution
of the decimated Navier-Stokes Eq. (6). We also need the
energy flux �EðKÞ through wave number K due to non-
linear transfer, defined as

�EðKÞ �
X
k�K

v̂�ðkÞ � cNLðkÞ; (11)

where cNLðkÞ denotes the set of Fourier coefficients of the
nonlinear term PDBðv;vÞ in the decimated Navier-Stokes
Eq. (6) and the asterisk denotes complex conjugation.
EðkÞ and �EðKÞ are mostly insensitive to the disorder
realization.

Figures 2 and 3 (inset) show the steady-state compen-

sated energy spectra k5=3EðkÞ and the energy fluxes�EðkÞ,
for various values of D between 2 and 1.5, respectively.
Both are quite flat, over a significant range of k values,
evidence that D-dimensional forced turbulence, Fourier
decimated down from the two-dimensional case, preserves
the key feature of two-dimensional turbulence of having an
inverse cascade that follows the �5=3 law. Note that the
inertial range (the flat region of the compensated energy
spectrum) shrinks as the dimension D decreases. The
absolute value of the energy flux is about 80% of the
energy injection " for D ¼ 2, but drops to less than 50%
for D ¼ 1:5. Indeed, as the dimension D is lowered, there
are fewer and fewer pairs of active modes in the forcing
band, capable through their beating interaction of draining
the energy into the infrared direction; thus the energy
injection will be more and more balanced by direct dis-
sipation near injection. Preventing this would require a
substantial lowering of the dissipation which in turn re-
quires a substantial increase in the resolution at the high-k
end. Anyway, the fact that the flux j�Ej becomes substan-
tially lower than injection does not prevent us from calcu-
lating the Kolmogorov constant, given (in terms of plateau

values) by CKol ¼ k5=3EðkÞ=ðj�EðkÞj2=3Þ. Figure 3 shows
the variation of the Kolmogorov constant with dimension.

When lowering the dimension from 2 to 1.5, a combined
effect of a rise in the compensated spectrum and a drop in
flux yields a monotonic growth of about a factor ten in the
Kolmogorov constant and a substantial growth of errors
due to fluctuations within the averaging interval. Probing
the conjectured divergence by moving closer to the critical
point Dc ¼ 4=3 would require much higher resolution. A
state-of-the-art 16 3842 simulation of sufficient length
might shed light.
We finally observe that the fractal Fourier decimation

procedure—that allows numerical experimentation by
spectral simulation—can be started from any integer di-
mension and can be applied to a large class of problems in
compressible and incompressible hydrodynamics and
MHD. It is also applicable to other problems in nonlinear
dynamics and condensed matter physics, such as critical
dynamical phenomena [14], Kardar–Parisi–Zhang dynam-
ics [15], and nonlinear wave interactions [16].
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