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We demonstrate effective equilibration for unitary quantum dynamics under conditions of classical

chaos. Focusing on the paradigmatic example of the Dicke model, we show how a constructive description

of the thermalization process is facilitated by the Glauber Q or Husimi function, for which the evolution

equation turns out to be of Fokker-Planck type. The equation describes a competition of classical drift and

quantum diffusion in contractive and expansive directions. By this mechanism the system follows a

‘‘quantum smoothened’’ approach to equilibrium, which avoids the notorious singularities inherent to

classical chaotic flows.
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How do thermally isolated many particle quantum sys-
tems relax towards stationary states? Along with the recent
advances in quantum optics and cold atom experimenta-
tion, this fundamental question of theoretical physics
presents itself under new perspectives. The interacting,
and in many instances thermally decoupled, many particle
states realizable in cold atom devices show novel forms of
relaxation which can be monitored at hitherto unimagin-
able degrees of resolution. Examples of unconventional
relaxation phenomena include the formation of negative
temperature states [1], the buildup of textures in Brillouin
zones by an interplay of interaction and single particle
kinematics [2], or the relaxation into ergodic and other
types of nonthermal distributions [3–5].

There appears to be a consensus that for fully developed
chaos, and in the absence of conservation laws, relaxation
towards equipartition on a shell of conserved energy
(microcanonical distribution) represents a universal para-
digm. Recent work describes the ensuing equilibrated state
in terms of energy eigenfunctions whose phase space
profiles are presumed ergodic [3–5]. While computation-
ally efficient, this scheme does not reveal the physical
processes leading to thermalization.

In this Letter we approach the phenomenon from a more
dynamical perspective. We present our case for the para-
digmatic example of the Dicke model [6] which describes
the coupling of a (large) spin and an oscillator. At a critical
coupling strength, the model undergoes a quantum phase
transition into a superradiant phase, characterized by a
nonvanishing mean oscillator amplitude and chaotic dy-
namics [7]. In view of the recent experimental observation
of that phase transition [8], the issue of thermalization has
become concrete.

Our approach hinges on a manageable description of the
impact of quantum fluctuations on the semiclassical dy-
namics. A representation of the quantum density operator,
by Glauber’s Q function (aka Husimi function), turns out
to be the key. von Neumann’s equation for the density

operator assumes the form of a Fokker-Planck equation
for Q. The equilibration processes can then be understood
by appreciating the competition of classical drift and quan-
tum diffusion in expansive and contractive directions of the
flow supporting Q. We augment the general discussion by
an exact solution of a toy model which arguably reflects the
essence of the full problem.
In the end we will indicate that our methodology is

applicable to a whole class of chaotic dynamics. Even
certain periodically kicked systems qualify.
Dicke model.—We write the Dicke Hamiltonian as

Ĥ ¼ @

�
!0Ĵz þ!ayaþ g

ffiffiffi
2

j

s
ðaþ ayÞĴx

�
: (1)

Here, Ĵa, a ¼ x; y; z, are spin operators acting in a spin-j
representation, and a (ay) are photon annihilation (crea-
tion) operators. The first two terms in (1) respectively
describe spin precession about the Jz axis with frequency
!0 and harmonic oscillation with frequency !. The last
term describes the coupling of spin and oscillator with
coupling constant g. Crucially, the interaction contains
the so-called antiresonant terms Jþay þ J�a, where J� ¼
Jx � iJy are the familiar raising and lowering operators.

This fact makes the model distinct from an integrable
variant where these terms are neglected (rotating wave
approximation). At a critical value of the coupling
strength, gc � ffiffiffiffiffiffiffiffiffiffi

!!0
p

=2, the nonintegrable model (1)

undergoes a quantum phase transition into a superradiant
phase. For values g > gc, the photon amplitude a builds up
a nonvanishing excitation value, and the dynamics be-
comes globally chaotic.
Coherent state representation.—In view of the largeness

of the spin, j � 1, we find it convenient to represent the
theory in terms of coherent states [9–11],

jzi � 1

ð1þ jzj2Þj e
zĴ�jj; ji; (2)
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where z 2 C and jj; ji is a maximum-weight eigenstate of
Jz, i.e., Jzjj; ji ¼ jjj; ji. The states jzi are unit normalized,

hzjzi ¼ 1. They entail the expectation values hzjĴajzi ¼
jla, where lx;y;z are the three components of a unit vector

l ¼ ðsin� cos�; sin� sin�; cos�ÞT , whose angular orienta-
tion is defined through z ¼ ei� tanð�=2Þ. Each jzi has
minimum angular uncertainty, characterized by the solid
angle 4�=ð2jþ 1Þ which defines a Planck cell on the unit
sphere. The overcomplete set fjzig provides a resolution of

unity as 1 ¼ 2jþ1
�

R
d2z

ð1þzz�Þ2 jzihzj.
Similarly, oscillator coherent states are defined as [12]

j�i ¼ e����=2e�a
y j0i; (3)

where � 2 C and j0i is the vacuum, aj0i ¼ 0. The states
j�i assign a minimal uncertainty product to displacement
and momentum such that these quantities are confined to a

single Planck cell located at x / ð�þ ��Þ ffiffiffi
@

p
; p / ið��

��Þ ffiffiffi
@

p
within the classical phase space. The completeness

relation here reads 1 ¼ 1
�

R
d�j�ih�j.

We next represent the system’s time dependent density
operator �̂ðtÞ in terms of a coherent-state-based quasiprob-
ability density. Among the many possible choices the
Glauber Q function,

Qð�; zÞ ¼ 2jþ 1

�ð1þ zz�Þ2 h�; zj�j�; zi; (4)

turns out to be the most convenient one by far, for our
purposes. We here denote by j�; zi � j�i � jzi the overall
coherent state for spin and oscillator. Using the complete-
ness relations given above, one sees that Q is normalized
as

R
d�dzQð�; zÞ ¼ 1 and yields expectation values

of (antinormal ordered) operators as hamayni ¼R
d�dz�m��nQð�; zÞ. By its definition, Q exists and is

non-negative,Qð�; zÞ � 0, for any density operator �. The
latter property allows Q to converge to the classical phase
space density as @ ! 0. As the most rewarding property we
shall presently find that Q enables us to map the quantum

evolution equation i@dt�̂ ¼ ½Ĥ; �̂� onto a differential
equation of Fokker-Planck type, optimally suited to de-
scribe the dissipation-free equilibration.

Quantum dynamics.—Using identities such as Ĵxjzi	
hzj ¼ ½ð1� z2Þ@z þ 2j zþz�

1þjzj2�jzihzj and ayj�ih�j ¼ ð@� þ
��Þj�ih�j, it is straightforward to show that the evolution
equation of the distribution function Q assumes the
Fokker-Planck form

_Q ¼ ðLþLdiffÞQ;

L ¼ i@�

�
!�þ g

ffiffiffi
2

j

s
ðjþ 1Þ zþ z�

1þ jzj2
�

þ i@z

�
�!0zþ gffiffiffiffiffi

2j
p ð1� z2Þð�þ ��Þ

�
þ c:c:;

Ldiff ¼ igffiffiffiffiffi
2j

p @�@zð1� z2Þ þ c:c: (5)

Most remarkably, derivatives terminate at second order.
Less prudent choices of a quasiprobability might have
brought the plague of higher derivatives [13].
To understand the meaning of the first order, or drift

term, it is convenient to introduce canonically conjugate
action angle variables (I; c ) as � � ffiffiffiffiffi

jI
p

expðic Þ for the
oscillator and the canonical pair ( cos�;�) for the spin. It is
then a straightforward (if tedious) matter to show that the
drift operator becomes the classical Liouville operator,
LQ ¼ fh;Qg, where the effective Hamilton function

a b c d e

a b c d e

FIG. 1 (color online). Poincaré sections generated by monitoring the projection (lx; ly) of l in the southern hemisphere at fixed values
of the phase c . For each parameter value, g=gc, nine trajectories of different on-shell initial conditions are sampled. Upper row: Energy
�� ’ 0:2j�0j above the ground state and values g=gc (a) 0.2, (b) 0.7, (c) 0.9, (d) 1.01, (e) 1.5. Lower row: Energy �� ’ 20j�0j.
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h ¼ !0 cos�þ!I þ g
ffiffiffiffiffi
8I

p
cosc sin� cos� (6)

is obtained from the operator (1) by substituting Ĵ ! jl,
a ! ffiffiffiffiffi

jI
p

expðic Þ and dividing out @j ¼ L. The operatorL
thus describes the drift of the quasiprobability along the
classical trajectories of the Hamiltonian flow.

The distinctive feature of the classical dynamics is
global chaos in the superradiant regime, g > gc [7].
Referring to [15] for an in-depth discussion , we merely
note here that for g > gc and for excitations energies only
slightly above the ground state bound E0 ’ �j!0ð ggcÞ2
ergodic dynamics is observed. This is illustrated in the
Poincaré sections of Fig. 1, where the top (bottom) row
is for low (�E=jE0j ’ 0:20) [high (�E=jE0j ’ 30] excita-
tion. Both sections of Fig. 1(e) reflect dominance of chaos
and indicate equilibration. In particular, the low-excitation
portrait [1(e)] reveals chaos as dominant, even though the
energy shell includes only a small part of the Bloch sphere.

Quantum diffusion.—How does quantum mechanics in-
terfere with the classical drift? Quantum mechanics enters
the Fokker-Planck equation (5) through the diffusion op-
erator Ldiff . A key feature of the diffusion operator is the
absence of second order derivatives with respect to only
oscillator (x1;2 ¼ I; c ) or spin (x3;4 ¼ cos�;�) phase

space variables. The diffusion matrix D defining the op-
erator Ldiff �

P
ij@xi@xjDijðxÞ thus possesses a block

off-diagonal chiral structure,

D ¼ 0 d
dy 0

� �
:

While there will be no need to spell out the explicit
dependence of the chiral block d on the variables x ¼
ðI; c ; cos�;�Þ, we emphasize its smallness in j�1. The
chiral block structure of D entails a secular equation for
the eigenvalues of the form �4 � �2 trddy þ detddy ¼ 0.
The four eigenvalues of D thus come in two pairs

� ffiffiffi
a

p
;� ffiffiffi

b
p

, where a; b are the eigenvalues of the non-
negative 2	 2 matrix ddy. Each eigenvalue is associated
with an eigenvector corresponding to diffusive spreading
(þ ) or antidiffusive shrinking (� ). These four quantum
directions form a Cartesian frame wherein the four direc-
tions distinguished by the chaotic drift lie askew—one
expansive (unstable), one contractive (stable), and two
neutral (along the flow and transverse to the energy shell).

Since Q is guaranteed existence and positivity, quantum
diffusion (along the eigenvectors of D with positive eigen-
values) must oppose the contraction along the classically
stable manifold, thus preventing the buildup of singular
phase space structures. Deterministic contraction and

quantum diffusion balance at quantum scales 1=
ffiffiffi
j

p 
 ffiffiffi
@

p
.

At shorter length scales (which can be brought into play by
initial states squeezed along the classically stable direc-
tion), the second order differential diffusion operator be-
comes dominant (as can be seen by straightforward scaling
estimates); it prevents further contraction and smooths the

distribution. By contrast, at the large scales generated in
the classically unstable direction, the quantum (anti)diffu-
sive correction is of no significance. Rather, expansion
continues uninhibited, accompanied by the chaotic folding
necessitated by the compactness of the energy shell.
Toy model.—It is instructive to illustrate the interplay of

classical drift and quantum diffusion on an analytically
solvable toy model, provided by the Fokker-Planck equa-
tion _P ¼ ½@pp� @xxþDð@2p � @2xÞ�P; the diffusion

constant must be imagined small, 0<D � 1 and of quan-
tum origin, D / @. Antidiffusive contraction and determi-
nistic stretching are carried by x according to
vartðxÞ ¼ ½var0ðxÞ �D�e2t þD, where the variance is cal-
culated using an averaging prescription hfðx; pÞi ¼R
dxdpfðx; pÞPðx; pÞ. We infer that the minimum allow-

able quantum scale of x is
ffiffiffiffi
D

p
. If vartðxÞ is of the order but

larger than D, the characteristic scale for (the variance of)
x will grow to (macroscopic) order unity within the
Ehrenfest time 
 lnð1=DÞ. On the other hand, diffusive
expansion and deterministic contraction are carried by p
as vartðpÞ ¼ ½var0ðpÞ �D�e�2t þD. The balancing scale

for p is
ffiffiffiffi
D

p
. If the initial variance of p is much larger than

D (say, of the macroscopic order unity), the exponential
decrease to the order of D takes a time of the order
lnð1=DÞ, again the Ehrenfest time.
Generalizing the toy model one may choose the axes of

classical contraction and expansion skew to the principal
axes of quantum (anti)diffusion. Positivity of all variances
then restricts the relative orientations; clearly, the classi-
cally stable direction must not coincide with the axis of
antidiffusion, or else the respective variance would go
negative within a finite time. Referring to [15] for a de-
tailed discussion of the ensuing correlations in the Dicke
system, we here merely note that its guaranteed existence
protects theQ function from such a type of alignment, save
for exceptional tiny time spans.
Thermalization.—Turning back to the full problem, we

conclude that the interplay of deterministic expansion or
contraction, quantum diffusion, and chaotic folding (the
latter of course absent in the toy model) will spread out any
initial distribution over the compact energy shell. Location
E and width �E of the shell are determined by the initial

state, with �E
E 
 j�1=2 a minimal value for coherent state

initial distributions. Given any fixed phase space resolution
�x and a characteristic width x0 � �x of the initial dis-
tribution, the quantum and a purely classical description of
the flow, respectively, both predict full coverage of the
energy shell for time scales t > � lnð�x0=�xÞ, where � is
the Lyapunov time. However, important differences occur
in the dynamical buildup of the equilibrated state: while
the classical approach describes equilibration in terms of
the formation of an infinitely filigree structure of alternat-
ing high and vanishing phase space density—the result of
continued stretching and folding of the initial distribu-
tion—the quantum distribution remains smooth (on scales
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j�1=2) all the way along. This hallmark of quantum
chaotic propagation should be experimentally visible by
current spectroscopic techniques [16]. Finally, let us re-
mark on the universality of the above picture with regard to
variations in the initial conditions. Coherent states, being
isotropically supported by a single Planck cell, come clos-
est to the classical fiction of a single phase space point.
They naturally qualify as initial states for the equilibration
described above. Squeezed minimum uncertainty states are
equally well suited, even if squeezed along the classically
stable direction; the diffusion then smears the pertinent
uncertainty to the characteristic quantum scale mentioned.
Yet broader states succumb to equilibration even more
willingly.

Beyond the Dicke model.—While the relevance of quan-
tum diffusion operators to the description of the long time
dynamics in chaotic quantum systems has been noted
before, previous work [17] has added these contributions
by hand. Our present analysis exemplifies how quantum
diffusion emerges naturally. Evolution equations with de-
rivatives terminating at second order are not an exclusive
privilege of the Dicke model. Rather, whenever a chaotic
dynamical system has a Hamiltonian of the form of a
second-order polynomial in the pertinent observables and
allows for a coherent-state-based Q function, we expect a
Fokker-Planck equation to govern the time evolution of Q
and everything to go through in much the same way as
above. Examples are autonomous SUð3Þ dynamics [18]
whose Hamiltonians contain terms of first and second order
in the SUð3Þ generators. Certain kicked systems qualify as
well. Most notable among those is the kicked top [19]
whose near classical quantum behavior has recently been
observed experimentally [16]. Genuine many-body sys-
tems also have Fokker-Planck equations for Q, provided
the Hamiltonians are quartic in creation and annihilation
operators but contain no antiresonant terms. Examples of
much current interest are Bose-Hubbard systems [20,21].
Finally, chaotic dynamics where the evolution equations of
Q contain higher-order derivatives can allow for reason-
able Fokker-Planck approximations, if good arguments are
available for neglecting third and higher derivatives. We
shall cover such extensions of our work in a separate
publication [15].

Summarizing, we have discussed the principles whereby
the probability flux of a classically chaotic quantum system
covers its shell of conserved energy. The dynamics cru-
cially hinges on effectively diffusive quantum propagation
interfering with the deterministic exponential contraction
inherent to classically chaotic flows. (In the expansive
directions of the flow, quantum corrections are negligible.)
The net effect of this competition is the smoothing of a flow
which in a classical system would soon turn into a singular
structure. We discussed these phenomena on the example
of the Dicke model where the (Husimi representation of
the) quantum flow equation assumes the particularly handy

form of a Fokker-Planck equation. While the Fokker-
Planck representation pertains to other quantum systems,
it is far from generic. In general, one will meet higher-
order, differential equations. However, power counting
arguments [15] suggest that at the microscopic length

scales 
@
1=2, where quantum diffusion becomes effective,

higher terms in the expansion will be subdominant. It thus
stands to reason that the smoothing of the classical flow by
mechanisms similar to those discussed above is a general
effect.
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