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A rigorous evaluation of the two-photon exchange corrections to the hyperfine structure in lithiumlike

heavy ions is presented. As a result, the theoretical accuracy of the specific difference between the

hyperfine splitting values of H- and Li-like Bi ions is significantly improved. This opens a possibility for

the stringent test of the many-electron QED effects on a few percent level in the strongest electromagnetic

field presently available in experiments.
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Accurate measurements of the ground-state hyperfine
structure performed in H-like 209Bi, 165Ho, 185Re, 187Re,
207Pb, 203Tl, and 205Tl [1–5] were intended to probe QED
in the strong electromagnetic field generated by a heavy
nucleus. However, accurate calculations revealed that the
uncertainty of the predicted hyperfine splittings, which
mainly originates from the nuclear magnetization distribu-
tion correction (the Bohr-Weisskopf effect), is comparable
in magnitude with the QED correction, see, e.g., Refs. [6].
Accordingly, a direct identification of QED effects on the
hyperfine splitting in heavy H-like ions appeared to be
unfeasible. It was shown instead, that this uncertainty can
be significantly reduced in a specific difference of the
hyperfine splitting values of H- and Li-like ions with the

same nucleus [7]: �0E ¼ �Eð2sÞ � ��Eð1sÞ, where �Eð1sÞ

and �Eð2sÞ are the hyperfine splittings of H- and Li-like
ions, respectively, and the parameter � is chosen to cancel
the Bohr-Weisskopf correction. The parameter � can be
calculated to a rather high accuracy independently of the
employed nuclear magnetization distribution model.
Thereby, the stringent tests of QED in strong fields can
be achieved by studying the specific difference of the
hyperfine splitting values in H- and Li-like ions.

Till recently there existed only an indirect measurement
of the 2s hyperfine splitting in lithiumlike Bi ion with an
accuracy of about 3% [8]. Direct measurements with high-
precision laser spectroscopy are feasible at the current
experimental storage ring (ESR) and future HITRAP fa-
cilities in GSI [9]. Just recently, after 13 years of various
attempts, the hyperfine splitting of the ground-state Li-like
Bi ion has been directly observed in GSI [10].

Achievement of the required theoretical accuracy for the
specific hyperfine splitting difference for H- and Li-like
heavy ions demands the rigorous evaluation of various
QED and interelectronic-interaction effects. Since the in-
fluence of one-electron QED corrections is considerably
reduced in the specific difference, the total value of �0E is
essentially determined by the screened radiative and
interelectronic-interaction corrections. Recently, the
screened self-energy and a dominant part of the screened

vacuum-polarization contributions have been calculated
rigorously within a systematic QED approach [11,12].
This calculation represents an essential advance beyond
the local screening potential approximation employed
in the previous works [13–15]. As concerns the
interelectronic-interaction contribution, up to now it was
evaluated rigorously only up to the first order in 1=Z, see,
e.g., Ref. [16]. The contributions of second- and higher-
order in 1=Z were calculated within the Breit approxima-
tion employing many-body perturbation theory and
configuration-interaction methods [13,15,17,18]; however,
for high-Z ions such calculations can provide only an
approximate estimation of these corrections. In the present
Letter we report on the complete evaluation of the second-
order interelectronic-interaction corrections within a rig-
orous QED approach. As the most interesting application
of these results we present improved theoretical predic-
tions for the specific difference between the ground-state
hyperfine splitting values of H- and Li-like Bi ions.
The second-order interelectronic-interaction corrections

in the presence of an external potential correspond to the
third-order perturbation theory terms. Nowadays, several
approaches are used for derivation of the formal expressions
for perturbation serial terms from the first principles of
QED: the two-time Green-function method [19], the
covariant-evolution-operator method [20], and the line pro-
file approach [21]. Here, we employ the two-time Green-
function method. To simplify the derivation we specify the
formalism regarding the closed-shell electrons as belonging
to a redefined vacuum. In this way we have to consider
all two-loop diagrams for the valence electron in the pres-
ence of magnetic perturbation, i.e., 30 nonequivalent dia-
grams. These diagrams encompass the second-order
interelectronic-interaction corrections, the one-electron
two-loop, and the screened one-loop radiative corrections.
In our recent works [11,12] we have evaluated the screened
radiative corrections. The generic types of the second-order
interelectronic-interaction diagrams, where we now focus
on, are depicted in Figs. 1 and 2. The interelectronic-
interaction corrections to the hyperfine splitting were
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usually denoted by the terms Bð�ZÞ=Z and CðZ;�ZÞ=Z2,
see, e.g., Ref. [15]. The term Bð�ZÞ=Z determines
the interelectronic-interaction correction of the first
order in 1=Z, while the interelectronic-interaction correc-
tions of second- and higher-orders are denoted by the
term CðZ;�ZÞ=Z2. Here, we isolate the terms of the
second- and higher-orders: CðZ;�ZÞ=Z2¼Cð�ZÞ=Z2þ
DðZ;�ZÞ=Z3, where Cð�ZÞ=Z2 corresponds to the

interelectronic-interaction corrections of the second-order
in 1=Z only (Figs. 1 and 2), and the term DðZ;�ZÞ=Z3

represents the third- and higher-order corrections in 1=Z.
As inRef. [19], we call the parts of diagrams reduciblewhen
an intermediate-state energy coincides with the reference-
state energy and irreducible otherwise. The irreducible
parts of the three-electron diagrams depicted in Fig. 1 yield
the following contributions
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X
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FIG. 2. Feynman diagrams representing the two-electron part
of the two-photon-exchange corrections to the hyperfine split-
ting. Notations are the same as in Fig. 1.

(A) (B) (C) (D)

FIG. 1. Feynman diagrams representing the three-electron part
of the two-photon-exchange corrections to the hyperfine split-
ting. The wavy line indicates the photon propagator and the
double line indicates the electron propagators in the Coulomb
field. The dashed line terminated with the triangle denotes the
hyperfine interaction.
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C3el;D ¼ 2Z2Ga

X
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X
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n
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þ hPa�Pb1 jIð�Pab2Þjb2nihnb2jIð�b2Qb1ÞjQaQb1i
"a þ "b1 � "b2 � "n

þ 1

2

hPb2�Pb1 jIð�Pb2aÞjanihnajIð�aQb1ÞjQb2Qb1i
"b1 þ "b2 � "a � "n

�
; (4)

where the prime on the sums over intermediate states indicates that terms with vanishing denominators should be omitted
in the summation. The irreducible parts of the two-electron diagrams depicted in Fig. 2 yield
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X
b

X
P;Q

ð�1ÞPþQ i

�

Z 1

�1
d!

X0

n1;n2

hPaPbjIð!Þjn1n2ihn1n2jIð!þ�PaQaÞj�QaQbi
ð"Pa þ!� u"n1Þð"Qb �!��PaQa � u"n2Þ

; (5)
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where the prime on the sums indicates that in the summa-
tion we omit the reducible and infrared-divergent terms,
namely, those with "n1 þ "n2 ¼ "a þ "b in the ladder-W
diagrams, with "n1 ¼ "Pa, "n2 ¼ "Qb in the direct parts of
the cross-W diagrams, with "n1 ¼ "n2 ¼ "a, "b in the
exchange parts of the cross-W diagrams, with "n1 þ "n2 ¼
"a þ "b and "n1 þ "n3 ¼ "a þ "b and "n2 ¼ "n3 ¼ "Qb �
�PaQa in the ladder-S diagrams, with "n1 ¼ "Pa, "n2 ¼
"Qb and "n1 ¼ "Pa; "n3 ¼ "Qb and "n2 ¼ "n3 ¼ "Qb in the
direct parts of the cross-S diagrams, with "n1 ¼ "n2 ¼ "a,
"b and "n1 ¼ "n3 ¼ "a; "b and "n2 ¼ "n3 ¼ "a, "b in the
exchange parts of the cross-S diagrams. In Eqs. (1)–(8), a
and b refer to the valence- and core-electron states, re-
spectively; the sum over b runs over all closed-shell states,
P and Q are the permutation operators giving rise to the
signs ð�1ÞP and ð�1ÞQ of the permutation, respectively.
Ið!Þ is the interelectronic-interaction operator [19], u ¼
1� i0 preserves the proper treatment of poles of the
electron propagators. The energy difference �n1n2 is de-
fined as �n1n2 ¼ "n1 � "n2 . T0 is the electronic part of the
hyperfine-interaction operator and Ga is the multiplicative
factor depending on the quantum numbers of the valence
electron (see, for details Ref. [15]). The modified wave
function j�i is defined as follows

j�ai ¼
X"n�"a

n

jnihnjT0jai
"a � "n

: (9)

We refer to all contributions, where the energies of inter-
mediate states and the reference state coincide, the

infrared-divergent contributions, and the nondiagrammatic
terms as the remaining reducible part. Formal expressions
for this part, which are rather bulky, will be published
elsewhere. Following the treatment of Ref. [22] we intro-
duce a nonzero photon mass. In such a way we regularize
the infrared divergences and cancel them analytically.
Now let us discuss the numerical evaluation procedure.

The infinite threefold summations over the spectrum of the
Dirac equation have been performed employing the dual-
kinetic-balance finite basis set method [23] with basis
functions constructed from B splines [24]. The Fermi
model for the nuclear charge density and the sphere model
for the magnetic moment distribution have been utilized.
The summations over magnetic substates have been per-
formed analytically by means of standard formulas and
also numerically as an independent check. The most prob-
lematic part has consisted in evaluation of the two-electron
terms, which contain the integration over the energy of the
virtual photon !. In order to avoid strong oscillations
arising for large real values of !, we have performed a
Wick rotation of the integration contour, as it was done in
the calculations of two-photon exchange corrections to the
Lamb shift Refs. [25–27], and have employed the integra-
tion contours such as in Ref. [27]. However, special care
should be taken for the identification of the pole structure
of the integrands, because they are essentially more com-
plicated than in the case of the two-photon exchange
corrections to the energy levels.
In what follows we present our result for the case of Li-

like Bi utilizing the following values for the nuclear
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properties: hr2i1=2 ¼ 5:5211 fm [28], I� ¼ 9=2� , and
� ¼ 4:1106ð2Þ�N [29]. We have performed calculations
in both Feynman and Coulomb gauges and the correspond-
ing individual contributions to the Cð�ZÞ=Z2 are presented
in Table I. The total result is gauge independent on the level
of the numerical accuracy, that serves as an accurate check
for both the derived formulas and the numerical proce-
dures. As an additional check, we have reproduced the
third-order many-body perturbation theory (MBPT) result,
considering the Breit approximation in the derived expres-
sions. Finally, we have found that the result of the rigorous
QED evaluation of the two-photon exchange correction
0.000 740 is in reasonable agreement with the 1=Z2 term
0.000 75 extracted from the large-scale configuration-
interaction Dirac-Fock-Sturm calculation.

Now let us come to the consideration of the specific
difference between the ground-state hyperfine splitting
values for H-like and Li-like Bi. The cancellation of the
Bohr-Weisskopf effect appears with � ¼ 0:168 86 for the
case of Bi. In Table II we present the current status of
individual contributions to the specific difference. The
rigorous evaluation of the two-photon exchange correc-
tions improves the accuracy of the interelectronic-
interaction term by an order of magnitude in comparison
with previous calculations [11,12]. The accuracy of the

screened QED contribution has been also increased due to
recent rigorous evaluations of the Wichmann-Kroll parts of
the electric and magnetic loops [30], which was accounted
for in Refs. [11,12] within some approximations. Thus, the
remaining theoretical uncertainty for the specific differ-
ence comes from the uncalculated Wichmann-Kroll parts
of the screened vacuum-polarization correction and from
the 1=Z3 and higher orders interelectronic-interaction
term. The second uncertainty in the total value of �0E
arises from the uncertainty of the nuclear magnetic mo-
ment, the nuclear polarization corrections [31], and other
nuclear effects, which do not completely cancel in the
specific difference. It should be noted that the nuclear
magnetic moment uncertainty can be larger due to a chemi-
cal shift [32]. Employing the experimental value of the 1s

hyperfine splitting �Eð1sÞ
exp ¼ 5:0840ð8Þ eV [1] and the

theoretical result for the specific difference, one can easily

find the hyperfine splitting for Li-like Bi �Eð2sÞ ¼
797:16ð14Þ meV, where the accuracy is fully determined
by the uncertainty of the experimental value. As one can
see from Table II, the one-electron QED corrections are
strongly canceled in the specific difference and the domi-
nant QED contributions comes from the many-electron
effects. Therefore, the theoretical accuracy achieved now
for the specific difference allows us to test the many-
electron QED effects on the few percent level, provided
the hyperfine splittings in H- and Li-like bismuth are
measured with a relative accuracy of about 10�6. When
the QED corrections will be tested and found to be valid,
the comparison between the theoretical and experimental
values will enable the determination of the nuclear mag-
netic moments and their volume distribution.
In summary, we have rigorously calculated the two-

photon exchange correction to the hyperfine splitting in
heavy Li-like ions. As a result we have significantly
increased the accuracy of the specific difference, thus
providing the theoretical prerequisite for a test of many-
electron QED effects at strongest electromagnetic fields.
Further extensions of these calculations to the g factor of
Li-like and B-like heavy ions may also serve for an inde-
pendent determination of the fine structure constant from
QED at strong fields [33].
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TABLE I. Individual contributions to the two-photon ex-
change correction Cð�ZÞ=Z2 for the ground-state hyperfine
structure of the Li-like 209Bi80þ.

Contr. Feynman Coulomb

3el, A 0.001 685 0.002 229

3el, B �0:001 942 �0:002 489
3el, C 0.001 154 0.001 036

3el, D 0.003 781 0.003 914

2el, lad-W 0.003 401 0.003 960

2el, cr-W 0.000 363 �0:000 019
2el, lad-S 0.001 155 0.001 226

2el, cr-S 0.000 207 �0:000 001
reducible �0:009 063 �0:009 116

Total 0.000 740 0.000 740

TABLE II. Individual contributions to the specific difference
�0E for 209Bi in meV.

�Eð2sÞ ��Eð1sÞ �0E

Dirac value 844.829 876.638 �31:809

Interelectronic-interaction

�1=Z �29:995 �29:995
�1=Z2 0.258 0.258

�1=Z3 and higher-orders �0:003ð3Þ �0:003ð3Þ
QED �5:052 �5:088 0.036

Screened QED 0.193(2) 0.193(2)

Total �61:320ð4Þð5Þ
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