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Using fits to numerical simulations, we show that the entire hierarchy of moments quickly ceases to

provide a complete description of the convergence one-point probability density function leaving the linear

regime. This suggests that the full N-point correlation function hierarchy of the convergence field becomes

quickly generically incomplete and a very poor cosmological probe on nonlinear scales. At the scale of unit

variance, only 5% of the Fisher information content of the one-point probability density function is still

contained in its hierarchy of moments, making clear that information escaping the hierarchy is a far stronger

effect than information propagating to higher ordermoments. It follows that the constraints on cosmological

parameters achievable through extraction of the entire hierarchy become suboptimal by large amounts. A

simple logarithmic mapping makes the moment hierarchy well suited again for parameter extraction.
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Introduction.—N-point correlation functions, first intro-
duced in cosmology by Peebles and collaborators to de-
scribe the large scale distribution of galaxies [1], are now
ubiquitous in this field. They are at the heart of many
cosmological probes like the CMB, galaxy clustering, or
notably weak lensing, which was recognized as one of the
most promising probe of the dark components of the
Universe [2–5], and which traces the cosmological con-
vergence field.

On large scales, or in the linear regime, correlations are a
particularly convenient approach to tackle the difficult
problem of statistical inference on cosmological parame-
ters. Indeed, primordial cosmological fluctuation fields are
believed to obey Gaussian statistics, and the first two
members of the hierarchy, the mean and the two-point
correlation function, provide a complete description of
such fields. However, much less is known about the perti-
nence of the correlation hierarchy in the nonlinear regime,
or on small scales, where in principle a lot of information is
contained, if only due to the large number of modes
available for the analysis. More elaborated statistical mod-
els must be made in this regime. For instance, the statistics
of the matter field and its weighted projection the conver-
gence field were shown to be closer to lognormal, at least in
low dimensional settings [6–9], though with sizeable de-
viations still.

Two effects relevant for statistical inference can in prin-
ciple play a role entering the nonlinear regime, departing
from Gaussian initial conditions. First, information may
propagate to higher order correlators. Second, the correla-
tion function hierarchy may not provide a complete de-
scription of the field anymore, so that information escapes
the hierarchy. Even though this second possibility was
pointed out qualitatively in an astrophysical context al-
ready in [6], it seems it was not given further attention in
the literature.

In this Letter we show, using accurate fits of the con-
vergence one-point probability density function to numeri-
cal simulations [9] that the second effect very quickly
completely dominates the convergence field, and thus
that the hierarchy is not well suited for inference on
cosmological parameters anymore.
Fisher information and orthogonal polynomials.—The

approach is based on decomposing the Fisher’s matrix
valued information measure in components unambigu-
ously associated to the independent information content
of the correlations of a given order. It was recently pro-
posed in [10], building upon [11]. Exact results at all orders
were obtained only for the moment hierarchy of a ideal-
ized, perfectly lognormal one dimensional variable, where
analytical methods could be applied. In cosmology, the
Fisher information matrix is widely used for many years
now to estimate the accuracy with which cosmological
parameters will be extracted from future experiments
aimed at some observables (e.g., [3,5,12]) assuming
Gaussian statistics.
For a general probability density function pðx; �; �Þ, �,

�; � � � any model parameters, its definition is

F�� ¼
�
@ lnp

@�

@ lnp

@�

�
: (1)

Its inverse can be seen through the Cramér-Rao bound
[12] to be the best covariance matrix of the relevant pa-
rameters achievable with the help of unbiased estimators.
The general procedure to decompose the Fisher information
content into uncorrelated pieces, corresponding to an or-
thogonal system, was presented in a statistical journal in
[11]. When the observables of interest are products of the
variables, i.e., moments or more generally correlation func-
tions, the orthogonal system are orthogonal polynomials. It
is discussed in detail in an cosmological context in [10]. In
particular, the variables for which the Fisher information
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content on� is entirely within the firstN pieces, such as the
Gaussian variables for N ¼ 2, are those for which the
function @� lnp entering (1), called the score function, is a
polynomial of order N in x. In the case of a single variable,
the uncorrelated contribution of order N to the Fisher in-
formation matrix F�� is given by

sNð�ÞsNð�Þ; (2)

where the Fisher information coefficients sN are the com-
ponents of the score function with respect to the orthonor-
mal polynomial of order N,

sNð�Þ ¼
�
@ lnp

@�
PNðxÞ

�
; (3)

hPnðxÞPmðxÞi ¼ �mn; n;m � 0: (4)

For any N, the following relation holds

XN
n¼1

snð�Þsnð�Þ ¼
XN
i;j¼1

@mi

@�
½��1�ij

@mj

@�
; (5)

where mi ¼ hxii and �ij ¼ miþj �mimj is the covariance

matrix. The right hand side being the expression describing
the Fisher information content of the moments m1 to mN .
Whether one recovers the full matrix F�� with N ! 1 or

only parts of it depends on the distribution under consid-
eration. A sufficient condition is that the polynomials Pn

form a complete basis set, which is then essentially equiva-
lent to the condition that the distribution can uniquely be
recovered from its moments hierarchy ([6,10] and referen-
ces therein). This and other sufficient criteria for complete-
ness are tightly linked to the decay rate of the probability
density function at infinity.

We define the cumulative efficiency �N of the moments
up to order N to capture Fisher information on � as

�Nð�Þ :¼
PN

n¼1 s
2
nð�Þ

F��

: (6)

From the Cramér-Rao bound,
ffiffiffiffiffiffi
�N

p
is the ratio of the best

constraints achievable on � with any unbiased estimator to
the expected constraints on � from the extraction of the
first N moments.

Fisher information coefficients.—We use the fits to
simulations from [9], valid down to the arcsec scales.
Initially built to correct for the failure of the lognormal
distribution to reproduce the high and low density tails of
the convergence � on a single lens plane, it reproduces
accurately the cosmological convergence as well, taking
into account the broader lensing kernel [13]. In terms of the
reduced variable x,

x ¼ 1þ �

j�emptyj ¼
: 1þ �eff

m ; (7)

where �empty is the minimal value of the convergence,

corresponding to a light ray traveling an empty region, it

takes the form of a generalized lognormal model for the
associated effective matter fluctuations �eff

m ,

pðx; �Þ ¼ Z

x
exp

�
� 1

2!2

�
lnxþ!2

2

�
2
�
1þ A

x

��
: (8)

In this equation, the three parameters Z, A and ! are such
that the mean of x is unity, and its variance �2 ¼
�2

�=�
2
empty (we are neglecting here a small but nonzero

mean of the convergence argued in [13]). Therefore, the
only relevant parameter is the variance of the associated
matter fluctuations �2, fixed by the cosmology from �empty

and the convergence power spectrum, together with some
filter function corresponding to the smoothing scale, de-
termining the level of non linearity of the field ([9], Fig. 1).
Linear and nonlinear regime being separated at �2 � 1.
We obtained Z, A, and!2, shown in Fig. 1, with the help of
a standard implementation of the Newton-Raphson method
for nonlinear systems of equations.
Orthogonal polynomials can very conveniently be gen-

erated by recursion, as exposed in details in [14], since they
satisfy a three terms recurrence formula. We define for
convenience

�̂ NðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðx; �Þ

q
�NðxÞ; (9)

where �NðxÞ is PNðxÞ rescaled such that the coefficient of
xN is unity. The recursion relations in [14] become

�̂ kþ1 ¼ ðx� �kÞ�̂k � �k�̂k�1;

�k :¼
R1
0 dxx�̂2

kðxÞR1
0 dx�̂2

kðxÞ
�k :¼

R1
0 dx�̂2

kðxÞR1
0 dx�̂2

k�1ðxÞ
;

(10)

and ��1ðxÞ ¼ 0, �1ðxÞ ¼ 1, �0 ¼ 1, that we implemented
using an appropriate discretization of the x axis. Proper
normalization of the polynomials can be performed after-
wards. The Fisher information coefficients were then
obtained with the help of Eq. (3), using a precise five point
finite difference method for the derivatives of Z, A, and !2

FIG. 1. The three parameters Z, A and !2 entering the gener-
alized lognormal model, as function of the variance of �eff

m .

PRL 108, 071301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 FEBRUARY 2012

071301-2



with respect to �2 that are needed to obtain the score
function.

In Fig. 2, we show the cumulative efficiency �Nð�2Þ, for
N ¼ 2 to N ¼ 5, from bottom to top. [Note that s1ð�2Þ
vanishes since the mean of x is unity for any value of the
variance]. The uppermost line contains therefore the vari-
ance, the skewness, the kurtosis as well as the 5th moment
of the field. The contribution of each successive moment
can be read out from the difference between the corre-
sponding successive curves. For higher N quick conver-
gence of �N occurs, presented in Fig. 3 as the solid line,
showing �10. For small values of the variance, the field is
still close to Gaussian, so that the Fisher information is
close to be entirely within the the 2nd moment, and accord-
ingly the ratio � is close to unity in this regime. It is
obvious from these figures that the main effect for larger
values of the variance is not that Fisher information is
transferred to higher order moments, but rather the dra-
matic cutoff as soon as the variance crosses 0.1. At redshift
1, this corresponds to the scale of� 10 ([9], Fig. 1), so still
within scales probed by weak lensing. For �� 1, the ratio
is close to 0.05, meaning that all moments completely fails
to capture the information. Optimal constraints on any
cosmological parameter entering � are thus for this value

of the variance a factor 1=
ffiffiffiffiffiffiffiffiffi
0:05

p � 4:5 tighter than those
achievable with the help of the entire hierarchy.

In Fig. 3 we compare these results to the exact analytical
expressions given in [10] for the lognormal distribution,
shown as the dashed line. These are given by, accounting
for the different normalization,

s2Nð�2Þ ¼ q2
qN

1� qN

�YN�1

n¼1

ð1� qnÞ
��XN�1

n¼1

qn

1� qn

�
2
; (11)

with q :¼ 1=ð1þ �2Þ. The total Fisher information con-
tent being in this case ðq= lnqÞ2=2� q2=ð4 lnqÞ. There also

the information content of the moments saturates quickly
as N grows. It is striking that the incompleteness of the
moment hierarchy occurs much earlier in the convergence
field than in the lognormal. This can be understood from
the following considerations. The main effect of the im-
proved model (8) for the convergence is to reproduce
accurately the very sharp cutoff of the probability density
function at low convergence values ([9], Figs. 3–6). This
cutoff is very sensitive to the variance of the field, more
sensitive than the cutoff of the lognormal. However, there
the contribution to the moment mn, x

n, is beaten down by
orders of magnitude. To make this point clearer, we show
in Fig. 4 the Fisher information density pð@�2 lnpÞ2 for the
lognormal distribution (dashed) and the model we used
(solid), at the scale of � ¼ 1 It is obvious in both cases that
a large fraction of the information is contained in the
underdense regions, describing the cutoff of the distribu-
tion, but unaccessible to the moments of x. Since this is
even more the case for the convergence field, the efficiency
is accordingly even worse.
Restoration of the information.—Finally we investigate

to what extent the moment hierarchy of lnx contains more
Fisher information than the hierarchy of x. Though our
method is completely independent, this can be seen as
complementary to recent works looking at the statistics
of the field after local transforms, and at the statistical
power of its power spectrum initiated in [15–17], even
though in these works the fact that information actually
completely escapes the hierarchy is not appreciated. This is
done with the very same method used above, by obtaining
the polynomials orthogonal to the distribution of lnx, or
equivalently decomposing the score function of x in poly-
nomials in lnx rather than in x. This is seen to perform very
well, as shown by the dotted lines in Fig. 3. From bottom to
top are plotted �1, �2 and �3. Also shown in the figure is �10

FIG. 2. The cumulative efficiency �N of the moments of
the convergence in capturing Fisher information, for N ¼ 2 to
N ¼ 5, defined in Eq. (6), from bottom to top, as function of the
variance of �eff

m .

FIG. 3. Solid and dashed line: the efficiency �N¼10 of the first
10 moments to capture Fisher information, for the convergence
field (solid) and lognormal field (dashed). The curves do not
change anymore with increasing N. Dotted: �1, �2, �3 and �10 for
the logarithmic transform of the field, from bottom to top.
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but it is not to be distinguished from unity, meaning that
completeness of the hierarchy is restored. We see that over
the full range at least 80% of the information is back in the
two first moments, and 95% in the first three.

Conclusions.—We have studied the statistical power of
the moment hierarchy of the convergence field, when
leaving the linear regime. Notably, the hierarchy ceases
to provide a complete description of the statistics of the
convergence, letting an increasingly large fraction of the
Fisher information actually escape the hierarchy, and thus
making constraints on cosmological parameters achievable
with measurements of the hierarchy suboptimal by increas-
ingly large factors. While our results are exact only for the
one-point distribution (or equivalently the full correlation
function hierarchy of the convergence field in the limit of
vanishing correlations), the correlation function hierarchy
will also show a similar behavior, though the amplitude of
the loss in information and constraining power may vary
from parameter to parameter in the details. This is because
this defect, for any number of variables, is due to the very
slow decay rate at infinity of the field distribution, which
cannot be reproduced by the exponential of a polynomial in
the relevant variables. Our findings are consistent with
previous analytical results on the lognormal distribution
[10], and numerical work from N-body simulations at the
power spectrum level [15,16]. Making a tighter connection
to such simulation results with the methods presented here
is the subject of future work. Of course, the quest for the
information in the nonlinear regime already has problems
of its own, such as shot noise issues, or accurate modeling,
that we did not consider here. Nonetheless, these results
clearly shows that if the correlation function hierarchy is to

play a substantial role in getting constraints out of the
mildly or nonlinear regime, then an approach similar to a
Gaussianizing transform [16,17], in this work a simple
logarithmic mapping, can hardly be avoided though the
details still needs to be figured out. It is reassuring that this
approach seems to work well to first order, and that first
steps have recently already been taken in that direction in
perturbation theory [18], for the matter field. Our work also
points toward low convergence regions as carrying large
amounts of information, though the importance of noise
issues needs to be clarified in this regime. Thus, many
promising ways have still to be explored to make profit
of mildly and nonlinear scales.
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are however sensitive to the tail.
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