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The cosmological constant is one of the most pressing problems in modern physics. We address this

issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of

the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a

vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows

that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state

energy of the emergent effective field theory. This suggests that a proper computation of the cosmological

constant would require a detailed understanding about how Einstein equations emerge from the full

microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for

any quantum or emergent gravity scenario.
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The cosmological constant [1] has been one of the most
mysterious and fascinating objects for both cosmologist
and theoretical physicists since its introduction almost a
century ago [2]. Once called by Einstein his greatest blun-
der, it seems nowadays the driving force behind the current
accelerated expansion of the universe. The explanation of
its origin is considered one of the most fundamental issues
for our comprehension of general relativity (GR) and
quantum field theory.

Since this constant appears in Einstein equations as a
source term present even in the absence of matter and with
the symmetries of the vacuum (T�

�� / g��), it is usually

interpreted as a ‘‘vacuum energy’’. Unfortunately, this has
originated the so-called ‘‘worst prediction’’ of physics. In
fact, the estimated value, which is naively obtained by
integrating the zero-point energies of modes of quantum
fields below Planck energy, is about 120 orders of magni-
tude larger than the measured value. Despite the large
number of attempts (most notably supersymmetry [3,4],
which, however, must be broken at low energy) this prob-
lem is still open. We can summarize the situation by saying
that, given the absence of custodial symmetries protecting
the cosmological term from large renormalization effects,
the only option we have to explain observations is fine
tuning [5,6].

This huge discrepancy is plausibly due to the use of
effective field theory (EFT) calculations for a quantity
which can be computed only within a full quantum theory
of gravity (see, however, [7] for a proposal in the semi-
classical gravity limit). Unfortunately, to date, we do not
have any conclusive theory at our disposal. However, the
possibility of a failure of our EFT-based intuition is sup-
ported by what can be learned from analogue models
of gravity [8], given that, in these models, the way in
which the structure of the spacetime emerges from the

microscopic theory is fully under control. In [9,10] it was
shown that a naive computation of the ground-state energy
using the EFT (the analogue that one would do to compute
the cosmological constant), would produce a wrong result.
The unique way to compute the correct value seems to use
the full microscopic theory.
Given the deep difference in the structure of the equations

of fluid dynamics and GR (and other gravitational theories),
an accurate analogy cannot be performed at the dynamical
level: indeed, this is forbidden by the absence of diffeo-
morphism invariance and of local Lorentz invariance.
However, in [11] it was shown for the first time that the
evolution of part of the acoustic metric in a Bose-Einstein
condensate (BEC) is described by a Poisson equation for
a nonrelativistic gravitational field, thus realizing a (partial)
dynamical analogy with Newtonian gravity. Noticeably,
this equation is endowed with a source term that is naturally
identified as a cosmological constant, being there even
in the absence of real phonons.
In this Letter we will consider such analogue model for

gravity and directly show that the cosmological constant
term cannot be computed through the standard EFT
approach, confirming the conjecture of [9]. However, we
find that also the total ground-state energy of the conden-
sate does not give the correct result: indeed, the cosmo-
logical constant is comparable with that fraction of the
ground-state energy corresponding to the quantum
depletion of the condensate, i.e., to the fraction of atoms
inevitably occupying excited states of the single particle
Hamiltonian. In conclusion, the origin and value of such
term teach us some interesting lessons about the cosmo-
logical constant in emergent gravity scenarios.
Settings.—The model used in [11] is a modified BEC,

including a soft breaking of the Uð1Þ symmetry associated
with the conservation of particle number. This unusual
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choice is a simple trick to give mass to quasiparticles that
are otherwise massless by Goldstone’s theorem. In second
quantization, such a system is described by a canonical

field �̂y, satisfying ½�̂ðt;xÞ; �̂yðt;x0Þ� ¼ �3ðx� x0Þ,
whose dynamics is generated by the grand-canonical

Hamiltonian Ĥ ¼ Ĥ��N̂, where

Ĥ ¼
Z

d3x

�
@
2

2m
r�̂yr�̂þ V�̂y�̂þ g

2
�̂y�̂y�̂ �̂

� �

2
ð�̂ �̂þ�̂y�̂yÞ

�
; (1)

and N̂ is the standard number operator for �̂. In order for

the interaction between bosons to be described by Ĥ, the
gas must be dilute, i.e., �a3 � 1, where � is the density
and a � 4�gm=@2 is the s-wave scattering length. For
more details on this model and on possible physical real-
izations, see [11,12]. See also [13] for a generalization to
condensates with many components.

We describe the formation of a BEC at low temperature
through a complex function �0 for the condensate and an

operator �̂ for the perturbations on top of it [14]:

�̂ ¼ �0ðIþ �̂Þ: (2)

Clearly, this is only an approximate characterization of the
many body ground state. The validity of the mean field
approximation must be checked, a posteriori, by control-

ling that the fluctuation h�̂2i is much smaller than
j�0j2 ¼ �0. If this is not so, the description of the effective
dynamics (e.g. the existence of an acoustic geometry
where phonons propagate) does not hold any more. The

canonical commutation relation for �̂y implies

½�̂ðt;xÞ; �̂yðt;x0Þ� ¼ 1

�0ðxÞ�
3ðx� x0Þ: (3)

We adopt the notation of [15], where a rigorous quantiza-

tion and mode analysis of the field �̂ is presented for a
standard BEC. Those results are here summarized and
generalized to the Uð1Þ-breaking case of [11].

For a stationary condensate, @t�0 ¼ 0 and Eqs. (1) and
(2) lead to a modified Gross-Pitaëvski equation

�
� @

2

2m
r2 þ V ��þ g�0 � �

�0
�

�0

�
�0 ¼ 0: (4)

For the aim of this Letter, it is enough to consider only
homogeneous backgrounds. Thus, one can assume that
V ¼ 0 and the condensate is at rest, such that �0 has a
constant phase. For stability reasons, �0 must be real
(�0

� ¼�0¼ ffiffiffiffiffiffi
�0

p
), and Eq. (4) simplifies to �¼g�0��.

The equation for the quasiparticles is solved via
Bogoliubov transformation involving the Fourier
expansion

�̂ ¼
Z d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0ð2�Þ3
p ½uke�i!tþik�xâk þ v�

ke
þi!t�ik�x

ây
k �;

(5)

where âk and âyk are quasiparticles’ operators and the

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ð2�Þ3

p
has been inserted such that the

Bogoliubov coefficients uk and vk obey the standard nor-
malization jukj2 � jvkj2 ¼ 1. The dispersion relation is

@
2!2 ¼ 4�g�0 þ g�0 þ �

m
@
2k2 þ @

4k4

4m2
; (6)

describing massive phonons with ultraviolet corrections,
mass M, and speed of sound cs [11]

M ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
�g�0

p
g�0 þ �

m; c2s ¼ g�0 þ �

m
: (7)

As shown in [11], when the wavelength is larger than the
healing length � ¼ @=mcs, phonons propagate in an acous-
tic geometry with effective local Lorentz invariance and
their dispersion relation (6) is relativistic (quadratic).
When k > ��1, the quartic term of the dispersion relation
(6) is instead dominant and the effective geometry is not
defined. The Lorentz breaking scale LLV is thus identified
with �.
Standard manipulations give u2k ¼ ð1�D2

kÞ�1 and
v2
k ¼ D2

kuk, where uk and vk are chosen to be real and

Dk � @!� ð@2k2=2mþ g�0 þ �Þ
g�0 � �

: (8)

Vacuum expectation values.—We can now compute the

vacuum expectation value of Ĥ in the ground state j�i,
the Fock vacuum of the quasiparticles (âkj�i ¼ 0, 8 k).

To this aim, it is convenient to expand Ĥ in powers of �̂:

Ĥ � H 0 þ Ĥ 1 þ Ĥ 2, where H 0, Ĥ 1, and Ĥ 2 con-

tain, respectively, no power of �̂, only first powers, and
only second powers, and higher order terms associated
with quasiparticles’ self-interactions are neglected. The
energy density h0 of the condensate (density of H 0) and

the density h2 of the expectation value of Ĥ 2 are

h0 ¼ �g�2
0

2
; h2 ¼ �

Z d3k

ð2�Þ3 @!jvkj2; (9)

while the expectation value of Ĥ 1 vanishes because it

contains only odd powers of âk and âyk. The integral in

Eq. (9) is computed by using the above given expression
for vk. Applying standard regularization techniques [16]

h2 ¼ 64

15
ffiffiffiffi
�

p g�2
0

ffiffiffiffiffiffiffiffiffiffi
�0a

3
q

Fh

�
�

g�0

�
; (10)

where Fh is plotted in Fig. 1 (dashed line) and Fhð0Þ ¼ 1.

PRL 108, 071101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 FEBRUARY 2012

071101-2



The total grand-canonical energy density is therefore

h¼ h0þh2 ¼ g�0
2

2

�
�1þ 128

15
ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffi
�0a

3
q

Fh

�
�

g�0

��
(11)

and it coincides with the well known Lee-Huang-Yang
formula [17] when � ¼ 0.

The number density operator N̂ is analogously expanded

in powers of �̂: N̂ ¼ N0 þ N̂1 þ N̂2. The density of N0 is

�0 ¼ j�0j2, hN̂1i� ¼ 0, and �2 � hN̂2i� is

�2 ¼ �0h�̂y�̂i� ¼
Z d3k

ð2�Þ3 jvkj2

¼ 8�0

3
ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffi
�0a

3
q

F�

�
�

g�0

�
; (12)

where F� satisfies F�ð0Þ ¼ 1 (see Fig. 1, dotted line).

This is the number density of noncondensed atoms (deple-
tion) and it is basically the magnitude of the fluctuations
around the mean field. Note that �0a

3 � 1, as described
after Eq. (1).

Furthermore, when � ¼ 0, inverting the expression for
total particle density, � ¼ �0 þ �2, one obtains, up to the

first order in
ffiffiffiffiffiffiffiffi
�a3

p
�0 ¼ �

�
1� 8

3
ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffi
�a3

q �
; (13)

which is the density of condensed atoms in terms of the
total density � and the scattering length a [17]. In this case,
� ¼ g�0, such that the energy density 	 (density of

hĤi� ¼ hH þ�N̂i�) is

	 ¼ hþ�� ¼ g�2

2

�
1þ 128

15
ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffi
�a3

q �
: (14)

This is the well known Lee-Huang-Yang [17] formula for
the ground-state energy in a condensate at zero tempera-
ture. In general, when the Uð1Þ breaking term is small, this
term is expected to be the dominant contribution to the
ground-state energy of the condensate.

Analogue cosmological constant.—When the homoge-
neous condensate background is perturbed by small inho-
mogeneities, the Hamiltonian for the quasiparticles can be
written as (see [11])

Ĥ quasip: � Mc2s � @
2r2

2M
þM�g: (15)

Ĥquasip: is the nonrelativistic Hamiltonian for particles of

mass M [see Eq. (7)] in a gravitational potential

�gðxÞ ¼ ðg�0 þ 3�Þðg�0 þ �Þ
2�m

uðxÞ (16)

and uðxÞ ¼ ½ð�0ðxÞ=�1Þ � 1�=2, where �1 is the asymp-
totic density of the condensate. Moreover, the dynamics of
the potential �g is described by a Poisson-like equation�

r2 � 1

L2

�
�g ¼ 4�GN�p þ C�; (17)

which is the equation for a nonrelativistic short-range field
with length scale L and gravitational constant GN:

L¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16��0a

3
p ; GN ¼ gðg�0þ 3�Þðg�0þ�Þ2

4�@2m�3=2ðg�0Þ1=2
: (18)

Despite the obvious difference between �g and the usual

Newtonian gravitational potential, we insist in calling it the
Newtonian potential because it enters the acoustic metric
exactly as the Newtonian potential enters the metric tensor
in the Newtonian limit of GR. The appearance of a short-
range interaction in Eq. (17) is an artifact of the model. In
[13] it has been shown how to obtain a long range analogue
gravitational potential in a spinor BEC. However, the
reasoning is identical in all the other relevant aspects,
and the key result is unchanged.
The source term in Eq. (17) contains both the contribu-

tion of real phonons (playing the role of matter)

�p ¼ M�0½ðh�̂y�̂i
 � h�̂y�̂i�Þ
þ 1

2 Reðh�̂ �̂i
 � h�̂ �̂i�Þ�; (19)

where j
i is some state of real phonons, as well as a
cosmological constant like term (present even in the ab-
sence of phonons/matter)

C� ¼ 2g�0ðg�0 þ 3�Þðg�0 þ �Þ
@
2�

� Re

�
h�̂y�̂i� þ 1

2
h�̂ �̂i�

�
: (20)

Note that the source term in the correct weak field approxi-
mation of Einstein equations is 4�GNð�þ 3p=c2Þ. For
standard nonrelativistic matter, p=c2 is usually negligible
with respect to �. However, it cannot be neglected for the
cosmological constant, since p�=c

2 ¼ ���. As a conse-
quence C� ¼ �2c2s�, where � would be the GR cosmo-
logical constant. From Eq. (12) and evaluating
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FIG. 1. Fh [dashed line, Eq. (10)], F� [dotted line, Eq. (12)],
F�� [dot-dashed line, Eq. (21)], and F� [solid line, Eq. (22)].
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h�̂�̂i�¼
Z d3k

�0ð2�Þ3
ukvk¼ 8ffiffiffiffi

�
p

ffiffiffiffiffiffiffiffiffiffi
�0a

3
q

F��

�
�

g�0

�
; (21)

where F��ð0Þ ¼ 1 (see Fig. 1, dot-dashed line), we obtain

� ¼ � 20mg�0ðg�0 þ 3�Þ
3

ffiffiffiffi
�

p
@
2�

ffiffiffiffiffiffiffiffiffiffi
�0a

3
q

F�

�
�

g�0

�
; (22)

where F� ¼ ð2F� þ 3F��Þ=5 (see Fig. 1, solid line).

Let us now compare the value of � either with the
ground-state grand-canonical energy density h [Eq. (11)],
which in [9] was suggested as the correct vacuum energy
corresponding to the cosmological constant, or with the
ground-state energy density 	 of Eq. (14). Evidently, �
does not correspond to either of them: even when taking
into account the correct behavior at small scales, the vac-
uum energy computed with the phonon EFT does not lead
to the correct value of the cosmological constant appearing

in Eq. (17). Noticeably, since� is proportional to
ffiffiffiffiffiffiffiffiffiffi
�0a

3
p

, it
can even be arbitrarily smaller both than h and than 	, if the
condensate is very dilute. Furthermore, � is proportional
only to the subdominant second order correction of h or 	,
which is strictly related to the depletion [see Eq. (12)].

Fundamental scales.—Several scales show up in this
system, in addition to the naive Planck scale computed
by combining @ and the emergent constants GN and cs:

LP ¼
ffiffiffiffiffiffiffiffi
@c5s
GN

s
/
�
�

g�0

��3=4ð�0a
3Þ�1=4a: (23)

For instance, the Lorentz-violation scale LLV ¼ � /
ð�0a

3Þ�1=2a differs from LP, suggesting that the breaking
of the Lorentz symmetry might be expected at scale much
longer than the Planck length (energy much smaller than

the Planck energy), since the ratio LLV=LP / ð�0a
3Þ�1=4

increases with the diluteness of the condensate.
Note that LLV scales with �0a

3 exactly as the range of
the gravitational force [see Eq. (18)], signaling that this
model is too simple to correctly grasp all the desired
features. However, in more complicated systems [13],
this pathology can be cured, in the presence of suitable
symmetries, leading to long range potentials.

It is instructive to compare the energy density corre-
sponding to � to the Planck energy density:

E �¼ �c4s
4�GN

; EP¼ c7s
@G2

N

;
E�

EP

/�0a
3

�
�

g�0

��5=2
: (24)

The energy density associated with the analogue cosmo-
logical constant is much smaller than the values computed
from zero-point-energy calculations with a cutoff at the
Planck scale. Indeed, the ratio between these two quantities
is controlled by the diluteness parameter �0a

3.
Final remarks.—Taken at face value, this relatively

simple model displays too many crucial differences with
any realistic theory of gravity to provide conclusive

evidences. However, it displays an alternative path to the
cosmological constant, from the perspective of a micro-
scopic model. The analogue cosmological constant that we
have discussed cannot be computed as the total zero-point
energy of the condensed matter system, even when taking
into account the natural cutoff coming from the knowledge
of the microphysics [9]. In fact the value of � is related
only to the (subleading) part of the zero-point energy
proportional to the quantum depletion of the condensate.
This holds also in a spinor BEC model, since the reasoning
there is absolutely identical. The virtue of the single BEC
model is to display the key physical result without obscur-
ing it with unnecessary mathematical complications, with-
out loss of generality. Interestingly, this result finds some
support from arguments within loop quantum gravity mod-
els [18], suggesting a BCS energy gap as a (conceptually
rather different) origin for the cosmological constant.
The implications for gravity are twofold. First, there

could be no a priori reason why the cosmological constant
should be computed as the zero-point energy of the system.
More properly, its computation must inevitably pass
through the derivation of Einstein equations emerging
from the underlying microscopic system. Second, the en-
ergy scale of � can be several orders of magnitude smaller
than all the other energy scales for the presence of a very
small number, nonperturbative in origin, which cannot be
computed within the framework of an EFT dealing only
with the emergent degrees of freedom (i.e., semiclassical
gravity).
The model discussed in this Letter shows all this explic-

itly: the energy scale of� is here lowered by the diluteness
parameter of the condensate. Furthermore, our analysis
strongly supports a picture where gravity is a collective
phenomenon in a pregeometric theory. In fact, the cosmo-
logical constant puzzle is elegantly solved in those scenar-
ios. From an emergent gravity approach, the low energy
effective action (and its renormalization group flow) is
computed within a framework that has nothing to do with
quantum field theories in curved spacetime. Indeed, if we
interpreted the cosmological constant as a coupling con-
stant controlling some self-interaction of the gravitational
field, rather than as a vacuum energy, it would immediately
follow that the explanation of its value (and of its proper-
ties under renormalization) would naturally sit outside the
domain of semiclassical gravity.
For instance, in a group field theory scenario (a general-

ization to higher dimensions of matrix models for two
dimensional quantum gravity [19]), it is transparent that
the origin of the gravitational coupling constants has noth-
ing to do with ideas like ‘‘vacuum energy’’ or statements
like ‘‘energy gravitates’’, because energy itself is an emer-
gent concept. Rather, the value of � is determined by the
microphysics, and, most importantly, by the procedure to
approach the continuum semiclassical limit. In this respect,
it is conceivable that the very notion of cosmological

PRL 108, 071101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 FEBRUARY 2012

071101-4



constant as a form of energy intrinsic to the vacuum is
ultimately misleading. To date, little is known about the
macroscopic regime of models like group field theories,
even though some preliminary steps have been recently
done [20]. Nonetheless, analogue models elucidate in
simple ways what is expected to happen and can suggest
how to further develop investigations in quantum
gravity models. In this respect, the reasoning of this Letter
sheds a totally different light on the cosmological constant
problem, turning it from a failure of effective field theory to
a question about the emergence of the spacetime.
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