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We provide an efficient method for computing the maximum-likelihood mixed quantum state (with

density matrix �) given a set of measurement outcomes in a complete orthonormal operator basis subject to

Gaussian noise. Our method works by first changing basis yielding a candidate density matrix � which

may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm.

Our algorithm takes at worst Oðd4Þ for the basis change plus Oðd3Þ for finding � where d is the dimension

of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis

change takes only Oðd3Þ as well. The workhorse of the algorithm is a new linear-time method for finding

the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.
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As scientists, we are faced again and again with the
problem of determining from imperfect data what ‘‘really
happened’’ in an experiment. Generally, the more data one
has the better the reconstruction of the true events. Even so,
the view remains imperfect, so one typically tries only to
determine what was the event most likely to have led to the
observed data. When quantum mechanics is considered,
the situation is harder on the experimentalist, since even
the results of perfectly performed measurements may have
probabilistic results.

Nevertheless, one can still determine the quantum state
by performing many experiments on identically prepared
systems and building up good statistics on the outcomes. If
the set of experiments is informationally complete then the
mixed state density matrix describing the system can be
determined. This is called quantum state tomography
[1–3]. A complete determination of the state would require
an infinite number of perfect measurements, so instead we
concentrate on finding the maximum-likelihood state con-
sistent with the available data (cf. [4,5]).

We consider an informationally complete set of mea-
surements, each performed many times on identically pre-
pared systems. From the experimental outcomes, we would
like to determine the quantum state that gives the observed
results with highest probability. This can be a computa-
tionally intensive task. For the two qubit experiments of
[6], conventional maximum-likelihood (ML) solving took
more time than the experiments themselves. And it has
been reported in [7] that the ML reconstruction for 8 qubits
in [8] took weeks of computation. Our main result is a fast
algorithm for reconstructing this state when the noise is
Gaussian. For 8 qubits our algorithm runs in seconds.

The rest of the Letter is organized as follows: First, we
show that the ML state reconstruction problem with
Gaussian noise is equivalent to a least-squares minimiza-
tion problem on quantum states. Next, we prove that the
minimum takes a particularly simple form. Finally, we give

a fast algorithm that finds this minimum explicitly and
benchmark it against several other methods.
Reduction to density matrix minimization.—Observables

in quantum mechanics are Hermitian operators with the
expectation value of a Hermitian operator � applied to a
mixed state � given by Trð��Þ. We can represent the result
of an imperfect measurement of such an expectation sub-
ject to additive Gaussian noise with variance v as a proba-
bility density function

pðmj�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�v

p e�½m�Trð��Þ�2=ð2vÞ: (1)

At this point we have diverged from a fully general treat-
ment of maximum-likelihood quantum state reconstruction
starting from any positive operator valued measurement in
favor of a special case. In exchange, we are able find a very
fast solution method with a simple intuitive explanation.
The case we consider is of significant practical importance.
For example, such expectation values were measured in the
superconducting qubit experiments described in [6]. In
other cases, due to the central limit theorem, our method
will quickly converge to the correct result as a function of
the number of measurement results. And importantly, our
treatment corresponds to how many physicists view quan-
tum measurements.

Given an orthonormal Hermitian operator basis f�igd2i¼1

on d� dmatrices (with Tr½�i�j� ¼ d�ij), and a particular

set of measured values mij corresponding to the jth mea-

surement result of the expectation value of �i on the ‘‘true
state’’ �0, we want to find the mixed state �, a trace 1
Hermitian matrix with only non-negative eigenvalues,
maximizing the likelihood function

L ¼ Y
ij

pðiÞðmijj�Þ ¼
Y
ij

1ffiffiffiffiffiffiffiffiffiffiffi
2�vi

p e�½mij�Trð�i�Þ�2=ð2viÞ

or
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L ¼ Y
i

�
1ffiffiffiffiffiffiffiffiffiffiffi
2�vi

p
�
ni
e�½mi�Trð�i�Þ�2=ð2vÞ: (2)

Here ni is the number of measurement results for the
expectation of �i, mi ¼ P

n
j¼1 mij=ni is the average value

of those results and we have chosen ni so that v ¼ vi=ni is
independent of i. Then, the same � that maximizes L will
minimize the log likelihood function

L log ¼
X
i

½mi � Trð�i�Þ�2: (3)

Working in the operator basis of the f�ig’s is not con-
venient, but fortunately the distance is just the Hilbert-
Schmidt, or 2-norm, which is basis independent. We show
this here for completeness:

Lemma.—
P

iðmi � riÞ2 ¼ k�� �k22=d where mi ¼
Tr½�i�� and ri ¼ Tr½�i��.

Proof.—

k�� �k22 ¼ Trð�� �Þ2 ¼ Tr

��X
i

ðmi � Tr��iÞ�i

�
2
�

¼ X
ij

Tr½ðmi � Tr��iÞ�iðmj � Tr��jÞ�j�

¼ X
ij

ðmi � Tr��iÞðmj � Tr��jÞTr½�i�j�

¼ d
X
i

ðmi � Tr��iÞ2 (4)

j
The matrix � ¼ ð1=dÞPimi�i can be thought of as the

experimentally noisy view of the density matrix �0. Note
that it is trace one by construction, but may have negative
eigenvalues. Calculation of � from the mi’s is a change of
operator basis, and in general requires time Oðd4Þ (there
are d2 values of i and each �i is a d� d matrix). This will
actually be the limiting step in our overall algorithm, as all
other steps will be Oðd3Þ or better. In many cases of
interest, however, the operator basis change can be done
more quickly. This will be true whenever the matrices
representing the �i’s in the canonical basis are sparse. In
particular, if the �i’s are tensor products of the Pauli
matrices

f�0; �1; �2; �3g

¼
(

1 0
0 1

� �
;

0 1
1 0

� �
;

0 �i
i 0

� �
;

1 0
0 �1

� �)

on n qubits, so that d ¼ 2n, each �i has only d nonzero
elements and the change of basis can be carried out in
Oðd3Þ steps.

Now, after the change of basis from the mi’s to �, our
original maximum-likelihood problem has been trans-
formed into the following:

Subproblem 1: Given a trace-one Hermitian matrix �,
find the closest density matrix � (a trace-one Hermitian

matrix with only non-negative eigenvalues) under the
2-norm:

k�� �k22 ¼ Tr½ð�� �Þ2� ¼ X
ij

j�ij � �ijj2: (5)

This is immediately familiar as a least-squares minimi-
zation problem, for which standard minimizer packages
are well suited. Indeed, this is how the problem is often
solved in practice. Unfortunately, finding the solution can
be computationally intensive. In standard state reconstruc-
tion algorithms, this is the most expensive step by far (see
Fig. 1).
Simple form for the minimum.—To improve matters,

since the 2-norm is basis independent we can work in the
eigenbasis of �. The optimum � is diagonal in this basis.
This is immediate from the form of (5), where any off
diagonal terms can only contribute positive amounts to the
sum. Thus, the problem reduces to finding the eigenvectors
and eigenvalues of � and picking the d non-negative
eigenvalues for � minimizing (5). Eigensystem solvers
are Oðd3Þ and good packages exist [9].
We are left with a minimization over d variables, effec-

tively the square root of the difficulty of the original
problem. Call the eigenvalues of �, � �i, �i and arrange
them such that �i � �iþ1. We now want to minimizeP

ið�i ��iÞ2 such that
P

i�i ¼
P

i�i ¼ 1 and �i � 0.
Using the method of Lagrange multipliers to impose this
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FIG. 1 (color online). Run time for maximum-likelihood re-
construction of random n-qubit pure states mixed with the
identity and subjected to Gaussian noise on Pauli measurements.
We compare four techniques: The diamond points are
MATLAB’s fminsearch minimizing Tr½ð�� �Þ2� directly.
Squares points are timings for a semidefinite programming
method ðSeDuMiÞ [14]. Our implementation of the iterative method
of [15] is shown with triangles. Circles indicate our algorithm for
Subproblem 1. The stars denote our complete algorithm, includ-
ing Subproblem 1 and the basis change from measurement
outcomes to �. All timings were performed in MATLAB on a
single core of a 3 GHz Intel E8400 CPU.
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constraint, and writing �i ¼ x2i to enforce non-negativity
of �i we write the objective function

� ¼ X
i

ðx2i ��iÞ2 � L

�X
i

x2i � 1

�
: (6)

Differentiating with respect to xi we have

@�

@xi
¼ 4ðx2i ��iÞxi � 2Lxi ¼ 0: (7)

This equation has two solutions, either xi ¼ 0 or

x2i ¼ L=2þ�i: (8)

Note that L does not depend on i so each �i ¼ x2i is either
set to zero or given by �i plus the very same number. To
evaluate L we must pick a set s ¼ fi such that xi � 0g.
Then, summing (8) over i we have 1 ¼ P

ix
2
i ¼ jsjL=2þP

i2s�i or

L=2 ¼ 1

jsj
X
i=2s

�i (9)

and

� ¼ 1

jsj
�X
i=2s

�i

�
2 þX

i=2s

�2
i : (10)

Lemma.—Consider an i and j with �i > �j with i 2 s

and j =2 s. Then �i, the distance function for this case, is
always less than or equal to �j, the distance function for a

new set s0 ¼ sþ fjg � fig.
Proof.—We can write

�i ¼ jsj
�
L

2

�
2 þ X

k=2s

�2
k (11)

and for the case with j 2 s and i =2 s

�j ¼ jsj
�
L

2
þ�i ��j

jsj
�
2 ��2

j þ�2
i þ

X
k=2s

�2
k: (12)

If we had �j <�i this would imply

L <
�j ��i � jsjð�i þ�jÞ

jsj : (13)

Then we would have

�j ¼ �j þ L

2
þ�i ��j

jsj <
ðjsj � 1Þð�j ��iÞ

2jsj � 0

(14)

because �i � �j. But �j must be non-negative, therefore

� is never decreased by moving i into and j out of s. j
The lemma tells us that all the �i’s that are zero are

together at the end, matching up with the smallest �i’s.
Thus, rather than the 2d possible choices for swe need only
decide where to put the break between zero and nonzero
�i’s, for which there are only d choices.

Next, we show that the choice of s should be the largest
set satisfying the constraint that all the �i’s are non-
negative. Starting from Eq. (11), we imagine removing
some element j froms. Then

�0 ¼ 1

jsj � 1

�
jsjL

2
þ�j

�
2 þ�2

j þ
X
ks

�2
k (15)

and

�0 ��i ¼ 1

jsj � 1

�
jsjL

2
þ�j

�
2 þ�2

j � jsj
�
L

2

�
2

¼ jsj
jsj � 1

��
L

2

�
2 þ 2�j

L

2
þ�2

j

�

¼ jsj
jsj � 1

�
L

2
þ�j

�
2 � 0: (16)

In other words, setting any more of the �i’s to zero than
necessary increases the distance function. We are now
ready to give an algorithm for Subproblem 1.
Fast algorithm for Subproblem 1.—(1) Calculate the

eigenvalues and eigenvectors of �. Arrange the eigenval-
ues in order from largest to smallest. Call these �i; j�ii,
1 � i � d. (2) Let i ¼ d and set an accumulator a ¼ 0.
(3) If �i þ a=i is non-negative, go on to step 4. Otherwise,
set �i ¼ 0 and add �i to a. Reduce i by 1 and repeat
step 3. (4) Set �j ¼ �j þ a=i for all j � i. (5) Construct

� ¼ P
i�ij�iih�ij.

Figure 2 works through an example of this algorithm.

FIG. 2 (color online). Example of our algorithm for
Subproblem 1: (a) We start with �1 ¼ 3=5, �2 ¼ 1=2, �3 ¼
7=20, �4 ¼ 1=10, �5 ¼ �11=20, and accumulator a ¼ 0.
(b) Since �5 þ a=5 is negative, �5 is set to 0 and a to
�11=20. (c) Since �4 þ a=4 is negative, �4 is set to 0 and a ¼
�9=20. (d) Finally, �1, �2, and �3 each have a=3 ¼ �3=20
added to the corresponding �. The final result is �1 ¼ 9=20,
�2 ¼ 7=20, �3 ¼ 1=5, and �4 ¼ �5 ¼ 0.
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Efficiency of the algorithm.—The slowest step is step 1,
solving the eigensystem, which isOðd3Þ (standard libraries
such as LAPACK are limited by the cost of reducing a
Hermitian matrix to tridiagonal form using the
Householder method which is Oðd3Þ [10]). Step 2 is ob-
viously constant time, and step 3 and 4 together are easily
seen to be OðdÞ. Step 5 involves a choice of whether one
wants the answer in the eigenbasis of �, in which case it
has already been computed, or in some other basis, in
which case it is Oðd3Þ or better [11]. Thus, the overall
complexity is Oðd3Þ. The actual run time of an implemen-
tation will depend primarily on the eigensystem solver
used. Including the basis transformation step, which is
Oðd4Þ, renders this somewhat moot. Figure 1 compares
the run time of our algorithm with that of a traditional
ML optimization, with a semidefinite programming
method [14], and with the iterative algorithm of [15].

Discussion.—As we have pointed out, in trade for great
speed our method is not fully general, but corresponds well
to many cases of interest. One can see from Fig. 1 that
doing a full ML reconstruction may, in any event, be
unfeasible on systems larger than just a few qubits. We
also caution that ML methods should not be treated as a
panacea: The most likely state may not be very likely.
Much work is ongoing into modified ML methods and
more general Bayesian approaches to characterizing the
entire space of possible state reconstructions (cf. [16–18]).

Another less-than-general requirement of our argument
that ML state reconstruction reduces to finding the closest
density matrix under the 2-norm to a nonphysical candi-
date matrix� is the demand that the effective variance v ¼
vi=ni of the measurements of the expectation values of
Trð�i�Þ in Eq. (2) not depend on i. Though this may not be
the case in practice, often an experimentalist can chose to
perform more of the noisier measurements, thus equalizing
the variances. For example, in circuit QED (superconduct-
ing qubits) quantum nondemolition measurements of
Paulis are performed with v ¼ 1=ð��Þ where � is the
measurement rate and � is the measurement time.

Aside from state reconstruction, it is often desired to
perform process tomography [19], that is, to determine the
quantum input-output relation (a trace-preserving com-
pletely positive map) implemented by an apparatus.
Because of the Choi-Jamiolkowski isomorphism [20,21]
such a map can be represented by a density matrix. Thus,
the generalization of our result to process tomography
should be straightforward.

Finally, we note a connection to classical probability
theory. If one considers the eigenvalues �i (some of
which may be negative) as a noisy view of a probability

distribution, then the algorithm starting from step 2 is an
algorithm for finding the nearest proper probability distri-
bution. Furthermore, if the noise is Gaussian, this finds the
maximum-likelihood probability distribution.
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