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We investigate collective excitations of a harmonically trapped two-dimensional Fermi gas from the

collisionless (zero sound) to the hydrodynamic (first sound) regime. The breathing mode, which is

sensitive to the equation of state, is observed with an undamped amplitude at a frequency 2 times the

dipole mode frequency for a large range of interaction strengths and different temperatures. This provides

evidence for a dynamical SO(2,1) scaling symmetry of the two-dimensional Fermi gas. Moreover, we

investigate the quadrupole mode to measure the shear viscosity of the two-dimensional gas and study its

temperature dependence.
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Scale invariant behavior plays an important role in many
branches of physics. It is encountered both in fluctuations
near critical points of phase transitions [1] and in particle
physics when masses become unimportant at high energies
[2]. In nonrelativistic quantum mechanics, scale invariance
implies that the Hamiltonian HðxÞ scales under a dilatation
of the spatial coordinate x ! �x according to Hð�xÞ !
HðxÞ=�2. This scaling symmetry allows one to make fun-
damental statements about thermodynamic properties. For
example, even in a strongly interacting system inD dimen-
sions, pressure P and energy density " are related by the
same simple equation of stateP ¼ 2"=D as for an ideal gas.
One such system, which is of great interest in the ultracold
atom, heavy-ion, and nuclear astrophysics communities, is
the two-component Fermi gas in three dimensions interact-
ing via a zero-range potential with a scattering length a3D.
At unitarity (a3D ! 1) it is scale and conformally invariant
with universal properties [3–7]. For example, the equation
of state at zero temperature becomes� / EF, in which� is
the chemical potential and EF is the Fermi energy, and the
bulk viscosity � vanishes for arbitrary temperatures.

In two-dimensional systems scaling behavior is more
subtle. When the two-dimensional scattering length a2D [8]
approaches infinity, the gas becomes noninteracting. This
implies that at zero temperature one finds � ¼ EF / n2D
and hence the gas is trivially scale invariant. Here, n2D is
the density. At finite interaction strength, i.e., finite values
of a2D, the two-body scattering amplitude in two dimen-
sions fðqÞ ¼ 4�

� lnðq2a2
2D
Þþi�

is momentum dependent.

Evaluating fðqÞ at a characteristic momentum, for ex-
ample, the Fermi wave vector kF, leads to a density-
dependent coupling strength [9]. In a quantum field theo-
retical model of the superfluid Bose gas, it has been pointed
out that this could give rise to a quantum anomaly that
breaks scale invariance [10].

In the presence of an isotropic harmonic trap, the scale
invariance of the homogeneous system is replaced by a
dynamical SO(2,1) scaling symmetry [11]. The SO(2,1)
group, or ‘‘Lorentz’’ group, is the group of rotations in

2þ 1 dimensional space-time. For the trapped gas, the SO
(2,1) symmetry results in an excitation spectrum with
modes spaced by exactly 2!? [11,12]. Here, !? denotes
the trap frequency of the weakly confined axes. This gen-
erates a hydrodynamic breathing mode at a frequency
!B ¼ 2!?, independent of the interaction strength.
Moreover, the mode frequency is independent of amplitude
and the breathing mode should be undamped. However, the
quantum anomaly resulting from the density-dependent
coupling strength has been predicted to shift the hydro-
dynamic breathing mode of a Bose gas by �!B=!B ¼
1

4
ffiffiffi
�

p a3D=lz for a3D=lz � 1 [10] where lz denotes the ex-

tension of the gas in the strongly confined direction.
In this Letter, we study an interacting two-dimensional

Fermi gas using collective modes to investigate scale in-
variance and viscosity. We tune the ratio a3D=lz between
�3 and 0, which provides us with access to the hydro-
dynamic and the collisionless regimes. Previous experi-
ments using ultracold atomic gases to study scale
invariance of a two-dimensional Hamiltonian were limited
to weakly interacting bosons in a regime where 0<
a3D=lz � 1 [13,14] and to weakly interacting three-
dimensional gases with a highly elongated symmetry [15].
In our experiment [16,17], we create two-dimensional

Fermi gases of 40K atoms in a 50=50 mixture of the jF ¼
9=2; mF ¼ �9=2i and jF ¼ 9=2; mF ¼ �7=2i states of
the hyperfine ground state manifold. The Fermi gas is
loaded into the standing wave potential of an optical lattice
to create an array of two-dimensional gases. The trapping
frequency along the strongly confined direction is
!z ¼ 2�� 78 kHz and the radial trapping frequency is
!? ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

!x!y
p ’ 2�� 125 Hz with an anisotropy � ¼

j!x �!yj=2!? below 2%. Along the axial direction we

populate approximately 30 layers of the optical lattice
potential with an inhomogeneous peak density distribution
of typically 2� 103 atoms per spin state per 2D gas at the
center. We tune the interactions by applying a magnetic
field close to the Feshbach resonance at 202.15 G [18].
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First, we study the quadrupole mode of the two-
dimensional Fermi gas in order to identify the collisionless
and the hydrodynamic regimes. The quadrupole mode has
the incompressible velocity field vQðrÞ ¼ b½xêx � yêy��
cosð!QtÞ with a constant b, and corresponds to a surface

mode of the gas. In the collisionless limit, surface modes
are analogous to zero sound. At zero temperature the

quadrupole mode frequency is predicted to be !Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2� ~gÞ=ð1� ~gÞp

!? with ~g ¼ 1= lnðkFa2DÞ [19]. A col-
lective hydrodynamic mode, in contrast, corresponds to a
first sound mode. The frequency of the hydrodynamic

quadrupole mode !Q ¼ ffiffiffi
2

p
!? [20,21] is independent of

the equation of state because its incompressible flow pat-
tern prevents a change of the internal energy during the
oscillation [22].

We excite the quadrupole mode by adiabatically introduc-
ing a small anisotropy to the two-dimensional harmonic
oscillator potential using additional laser beams while main-
taining !x �!y � const and then abruptly returning to

the original trapping configuration. The atomic cloud oscil-
lates freely in this potential for up to 14 ms until we switch it
off and take an absorption image after 12 ms of time of
flight. The velocity amplitude of the excitation is 10% of the
Fermi velocity vF ¼ @kF=m. We determine the radius of the
cloud in the x and the y direction and fit their difference to
measure !Q [23]. Owing to the change in gravitational sag

during the excitation, we simultaneously excite small dipole
(center-of-mass) oscillations primarily in the vertical y di-
rection. We use these dipole oscillations to calibrate!x;y, of

which !y has the smaller error because of the larger oscil-

lation amplitude. The decay rate of the bare dipole mode
�D=!? ¼ 0:04� 0:01 is most probably caused by the
weak anharmonicity of our Gaussian trapping potential.

In Fig. 1(a), we show the quadrupole mode frequency
!Q of the two-dimensional Fermi gas. For large values of

the interaction parameter lnðkFa2DÞ we are in the collision-
less regime and observe !Q ’ 2!?, in agreement with the

theoretical expectation [19]. As we increase the interaction
strength, i.e., decrease the value of lnðkFa2DÞ, we enter the
hydrodynamic regime. This transition is marked by a sharp

decrease of the collective mode frequency to !Q ’ ffiffiffi
2

p
!?.

Theoretically, we expect the transition from the collision-
less to the hydrodynamic regime when the collision rate
�0 equals the mode frequency !Q. We estimate �0 ¼
�@n2DIm½fðkFÞ�=m using the optical theorem for the scat-
tering cross section � ¼ �Im½fðqÞ�=q. For very small
deviations from the equilibrium distribution, the collision
rate �0 is suppressed by a factor ðT=TFÞ2 < 1 owing to
the restriction of phase space because of Pauli’s exclusion
principle. Using our average density n2D � 6� 1012 m�2

and temperature T=TF ¼ 0:47, we estimate the transition
from the hydrodynamic to the collisionless regime at an
interaction parameter lnðkFa2DÞ � 3, in good agreement
with the observed mode frequency change.

In Fig. 1(b), we show the damping rate �Q of the

quadrupole mode. The zero sound mode in the collisionless
regime is damped by collisions which disrupt the coherent
quasiparticle motion. Hence, the mode damping rate �0

scales proportional to the normalized collision rate �0=!Q

with an asymptotic behavior �0 / ½lnðkFa2DÞ��2, shown as
the solid line. The damping rate reaches a constant offset of
0:1!?, even for the noninteracting gas, which we will
investigate in more detail below. For the first sound mode
in the hydrodynamic regime the situation is opposite:
collisions are necessary to establish local equilibrium
and first sound is damped by the deviation from this,
hence �1 / !Q=�0, which asymptotically is �1 /
1þ ½2 lnðkFa2DÞ=��2 (dashed line). In the fit of the pro-
portionality constant we have used the same constant offset
as for the noninteracting gas. In between the two extremes,
the damping rate peaks at the transition from the collision-
less to the hydrodynamic regime.
Having identified the hydrodynamic and collisionless

regimes, we now turn our attention to the breathing
mode and the question of scale invariance of the
two-dimensional Fermi gas. The velocity field of the
breathing mode is vBðrÞ ¼ b½xêx þ yêy� cosð!BtÞ with a

constant b. The breathing mode is excited by adiabatically
decreasing the strength of the two-dimensional confine-
ment and then abruptly returning to the original trapping
configuration. After an oscillation time of up to 20 ms, we
switch off the confinement and take an absorption image
after 12 ms time of flight. We identify the breathing
mode frequency [Fig. 1(c)] by studying the cloud radii in
the x and y direction as a function of hold time and define

FIG. 1 (color online). (a) Frequency of the quadrupole mode at
T=TF ¼ 0:47 with EF ¼ h� ð8:2� 0:7Þ kHz. The dotted line
shows the theoretical prediction of [19] in the collisionless limit
and the dashed line at !Q=!? ¼ ffiffiffi

2
p

is the hydrodynamic case.

(b) Damping of the quadrupole mode. The solid line shows the fit
for �0 (zero sound) and the dashed line for �1 (first sound), see
text. The dash-dotted line is the damping rate of the dipole mode.
(c) Frequency of the breathing mode. For the strong excitation
we have T=TF ¼ 0:37 and EF ¼ h� ð5:4� 0:8Þ kHz and for
the weak excitation T=TF ¼ 0:42 and EF ¼ h� ð8:1�
1:1Þ kHz. (d) Damping of the breathing mode. The dash-dotted
line is the damping rate of the dipole mode.
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!B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!B;x!B;y

p
. Again, we use the simultaneously ex-

cited dipole mode for continuous referencing. We study
two sets of data of the breathing mode as a function of
interaction strength which differ by a factor of 2 in exci-
tation strength [24]. The weak excitation strength corre-
sponds to 12% modulation of the width after time of flight.
We observe that the mode frequency is approximately
constant for all interaction strengths and averages at
!B=!y ¼ 2:00� 0:03 for the weak excitation and at

!B=!y ¼ 1:96� 0:01 for the strong excitation. We also

have not observed any change of the mode frequency with
the temperature of the gas in the range 0:37< T=TF < 0:9.

The independence of the breathing mode frequency
from interaction strength, oscillation amplitude, and tem-
perature and the fact that the mode frequency is very close
to !B ¼ 2!? suggest that the gas exhibits a dynamical
SO(2,1) scaling symmetry. In the hydrodynamic normal
regime, our result implies that the equation of state is
polytropic and � / n2D. Interestingly, this result is
compatible with BCS mean-field theory at finite tempera-
ture [21,25]. A more precise determination of the equation
of state, which also takes into account logarithmic inter-
action energy shifts and other beyond mean-field effects,
could be obtained from quantumMonte Carlo calculations,
which so far are only available for superfluids at zero
temperature [26].

The damping of the breathing mode [Fig. 1(d)] differs
fundamentally from the quadrupole mode, because it is
very small and independent of the interaction strength.
In order to understand the undamped behavior of
the breathing mode, we employ a simplified model based
on classical hydrodynamics. Energy dissipation of the
velocity field vBðrÞ, and hence damping of the coherent
motion of particles, is caused by the viscosity of the gas.
The energy dissipation rate _E follows from the two-
dimensional stress tensor [27] _E¼�1

2

R
d2r	ðrÞ�

ð@kviþ@ivk��ikr�vÞ2�R
d2r�ðrÞðr�vÞ2 with the shear

viscosity 	ðrÞ and the bulk viscosity �ðrÞ. The time-
averaged energy dissipation rate is h _Eit¼�2b2

R
d2r�ðrÞ,

entirely determined by the bulk viscosity. The amplitude
damping of the mode is � ¼ h _Eit=2hEit, using the time-

averaged mechanical energy hEit ¼ mb2

2

R
d2rr2nðrÞ. In

our data, the damping rate of the breathing mode averages
near �B=!y ’ 0:05, equal to the damping of the dipole

mode which is dominated by technical limitations (e.g.,
dephasing due to trap anharmonicities) rather than by
viscous forces. Additionally, we observe the absence
of damping for different excitation amplitudes and
temperatures.

As a side remark, we observe the transition from the
collisionless to the hydrodynamic regime also directly
for the breathing mode. In a slightly anisotropic trap
(� < 0:02) in the collisionless regime, the oscillation fre-
quencies of the widths of the cloud are split by 2�!B,
corresponding to two independent modes (see Fig. 2).

When the interaction strength is increased into the hydro-
dynamic regime the two mode frequencies lock together
and the whole cloud undergoes a collective breathing mode
at a single frequency. The occurrence of this ‘‘mode-
locking’’ coincides with the values of lnðkFa2DÞ, where
we observe the collisionless-hydrodynamic transition of
the quadrupole mode. As insets we show correlation plots
between the widths of the cloud demonstrating the change
from nearly uncorrelated into highly correlated motion.
We now turn our attention to the temperature dependent

damping of the quadrupole mode. The viscosity
of a strongly interacting gas plays an important role in the
investigation of the ratio of viscosity to entropy density
predicted by the anti–de Sitter/Conformal Field Theory
correspondence, which so far has been primarily investi-
gated in three dimensions [28–30]. In two dimensions, the
shear viscosity of the Fermi gas and its temperature depen-
dence have been theoretically investigated only in specific
limits [31,32], none of which correspond to our experimen-
tal situation. Our data for the temperature dependence of the
damping rate �Q are displayed in Fig. 3(a) for various

interaction strengths. We use the same hydrodynamical
model as above in order to link the shear viscosity to the
damping rate, which neglects possible temperature gra-
dients as well as quantum statistics. The time-averaged
dissipation rate of the quadrupole mode is h _Eit ¼
�2b2

R
d2r	ðrÞ. Using the parametrization 	ðrÞ ¼

@n2DðrÞ
ðT=TFÞ with a dimensionless viscosity 
ðT=TFÞ
[33], we obtain
ðT=TFÞ ¼ mhr2i�Q=2@.We determine the

rms radius of the cloud
ffiffiffiffiffiffiffiffihr2ip

numerically for the noninter-
acting gas. We fit our data with a power law 
ðT=TFÞ ¼

0 � ðT=TFÞ�, which is known to provide the high-
temperature scaling in three dimensions. The extracted
amplitudes 
0 and exponents � are shown in Figs. 3(b)
and 3(c), respectively. For lnðkFa2DÞ> 10, i.e., deep in the
collisionless regime, we observe no significant temperature
dependence (i.e., � ’ 0) and hence a constant 
, which at

FIG. 2. Difference between the breathing mode frequencies of
the two different axes at the collisionless-hydrodynamic cross-
over in a slightly anisotropic trap. The insets show the correla-
tion plot of the cloud widths along the two axes.
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least in part could be due to technical limitations such as
anharmonicities. In the weakly interacting regime, the tem-
perature dependence of the viscosity is significant with
� ’ 1=2. In contrast to three dimensions, where the
viscosity has been investigated intensively [7,28–30], no
theoretical prediction exists yet for this parameter range of a
two-dimensional Fermi gas.

In conclusion, we have studied collective oscillations
of a two-dimensional trapped Fermi gas in the
collisionless and the hydrodynamic regimes. We have ob-
served the existence of a breathing mode at 2 times the trap
frequency, which is invariant against interaction strength,
amplitude of the excitation, and temperature. Moreover,
this breathing mode is undamped as compared to the dipole
mode. These observations suggest a dynamic SO(2,1) scal-
ing symmetry of the trapped two-dimensional Fermi gas.
In our parameter range we do not observe indications
for a quantum anomaly breaking scale invariance. Using
the quadrupole mode, we have additionally studied the
temperature-dependence of the shear viscosity of the
two-dimensional Fermi gas.
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