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Ice states, in which frustrated interactions lead to a macroscopic ground-state degeneracy, occur in water

ice, in problems of frustrated charge order on the pyrochlore lattice, and in the family of rare-earth magnets

collectively known as spin ice. Of particular interest at the moment are ‘‘quantum spin-ice’’ materials,

where large quantum fluctuations may permit tunnelling between a macroscopic number of different

classical ground states. Here we use zero-temperature quantumMonte Carlo simulations to show how such

tunnelling can lift the degeneracy of a spin or charge ice, stabilizing a unique ‘‘quantum-ice’’ ground state—

a quantum liquid with excitations described by the Maxwell action of ð3þ 1Þ-dimensional quantum

electrodynamics. We further identify a competing ordered squiggle state, and show how both squiggle

and quantum-ice states might be distinguished in neutron scattering experiments on a spin-ice material.
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Ice is one of the strangest substances known to man. In
the common forms of water ice, protons occupy the space
between tetrahedrally coordinated oxygen ions, and each
oxygen obeys the ‘‘ice rule’’ constraint of forming two
long and two short bonds with neighboring protons [1,2]. It
was quickly realized that these ice rules did not select a
single, unique proton configuration [1], but rather a vast
manifold of classical ground states, with an entropy per
water molecule of s0 � kB logð3=2Þ [2]. This prediction
proved to be in good agreement with measurements of
entropy at low temperatures [3], but stands in clear viola-
tion of the third law of thermodynamics—at zero tempera-
ture we expect water ice to be described by a single,
unique, ground-state wave function.

The same ice rules, and the same extensive ground-state
degeneracy, arise in (i) problems of frustrated charge [4,5]
and orbital [6] order; (ii) proton-bonded ferroelectrics [7];
(iii) statistical descriptions of polymer melts [8]; and (iv) a
family of rare-earth magnets collectively known as ‘‘spin
ice’’ [9–12]. In each case, the ice rules have nontrivial
consequences for the properties of the system, notably an
algebraic decay of correlations [7,13–15] and excitations
with ‘‘fractional’’ character [1,5,8,16,17]. These exotic
features of the ice state have been extremely well charac-
terized in spin ice, where the algebraic decay of correlation
functions is visible as ‘‘pinch points’’ in the magnetic
structure factor [18], and the fractional excitations have
the character of magnetic monopoles [19–22].

All of these systems beg the obvious question—how is
the degeneracy of the ice manifold lifted at zero tempera-
ture? The simplest way for an ice to recover a unique
ground state at zero temperature is for it to order. This is
exactly what happens in KOH-doped water ice, where the
protons order below 70 K [23]. However in many spin-ice

materials, no order is observed [12]. This raises the intri-
guing possibility that there might exist a zero-temperature
‘‘quantum-ice’’ state, in which a single quantum mechani-
cal ground state is formed through the coherent superpo-
sition of an exponentially large number of classical ice
configurations. Such a state could have a vanishing entropy
at zero temperature, and so satisfy the third law of ther-
modynamics, without sacrificing the algebraic correlations
and fractional excitations (magnetic monopoles) associ-
ated with the degeneracy of the ice states.
In this Letter, we use zero-temperature quantum

Monte Carlo simulations to establish the ground state of
the minimal microscopic model of a charge or spin ice with
tunnelling between different ice configurations. We find
that the ground state is a quantum liquid, with an emergent
U(1) gauge symmetry, and excitations described by the
Maxwell action of ð3þ 1Þ-dimensional quantum electro-
dynamics. This state is the exact, quantum, analogue of the
spin-liquid phase realized in ‘‘classical’’ spin ices such as
Dy2Ti2O7, and exhibits the same magnetic monopole ex-
citations. We also explore how quantum effects in this
novel liquid modify the ‘‘pinch-point’’ singularities seen
in neutron scattering experiments on spin ices.
The best systems in which to look for a quantum ice are

those which are able to tunnel from one ice configuration to
another. In water ice, in the absence of mobile ionic defects
[24], this tunnelling occurs through the collective hopping
of protons on a 6-link loop. In spin ice, it is the cyclic
exchange of Ising spins on a hexagonal plaquette [25],
illustrated in Fig. 1. In both cases, the ice rules can be
written as a compact lattice U(1)-gauge theory in which the
displacement of protons—or orientation of magnetic mo-
ments—are associated with a fictitious magnetic field
B ¼ r�A, in the Coulomb gauge r �A ¼ 0 [13,15].
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Tunnelling between different ice configurations introduces
dynamics in the gauge fieldA, and the minimal description
of a quantum ice is the Maxwell action of conventional
quantum electromagnetism

S ¼
Z

d3xdt½E2 � c2B2�; (1)

where c is the effective speed of light and, in the absence of
electric charges, E ¼ �@A=@t. It follows directly from
Eq. (1) that correlation functions have dipolar character,
and local defects in an ice configuration act like deconfined
magnetic monopoles [26–28].

Field-theoretical arguments alone cannot resolve
whether the quantum U(1) liquid described by Eq. (1) is
realized in an ice material, or realistic microscopic model.
Encouragingly, evidence supporting the existence of such a
phase has been found in quantum Monte Carlo simulations
of strongly interacting hard-core Bosons on a pyrochlore
lattice [29]. However, these simulations are restricted to
temperatures comparable with the degeneracy temperature
of the ice manifold, and so are mute as to the zero-
temperature ground state. In this Letter, we use zero-
temperature Green’s function Monte Carlo (GFMC) simu-
lation techniques [30] to provide concrete evidence for the
existence of a quantum U(1) liquid ground state in a
microscopic lattice model of a quantum ice.

The model we consider was first introduced by Hermele
et al. [27] as an effective Hamiltonian for an easy-axis
antiferromagnet on a pyrochlore lattice. It is defined by the
Hamiltonian

H � ¼ �X
plaq

½juihvj þ jvihuj�

þ�
X
plaq

½juihuj þ jvihvj�; (2)

acting on all possible (spin) ice configurations. The first
term in Eq. (2) describes tunnelling from one ice configu-
ration to another, where jui should be understood as a
closed circulation of B on a ‘‘flippable’’ hexagonal pla-
quette [cf. Fig. 1]. The sum

P
plaq runs over all such

plaquettes in the lattice. The additional potential energy
term� counts the number of flippable plaquettes in a given

ice configuration, and renders the model exactly soluble for
� ¼ 1 [31]. All energies are measured in units of the
tunnelling matrix element between ice configurations.
For � ¼ 0, Eq. (2) is the minimal microscopic model for
a 3D quantum ice.
We have previously used GFMC simulation to establish

the existence of a quantum U(1) liquid in the quantum
dimer model on a diamond lattice [32,33]. The quantum-
ice model Eq. (2) differs from this only in that the
Hamiltonian acts on fully packed loop, rather than dimer
coverings of the lattice (cf. Ref. [34]). We can therefore
solve it using the methods set out in Ref. [33]. We consider
clusters with periodic boundary conditions, and make
extensive use of the fact that the ‘‘magnetic’’ flux � ¼R
dS �B through any periodic boundary is a conserved

quantity. This makes it possible to define a series of flux

quantum numbers ~� ¼ ð�x;�y;�zÞ for each cluster [33].

Our findings are summarized in Fig. 2.

FIG. 2 (color online). Ground-state phase diagram of the
quantum-ice model [Eq. (2)] as a function of the ratio � of
kinetic to potential energy. The 3D quantum-ice point � ¼ 0
exists deep within an extended quantum liquid phase with
deconfined fractional excitations and algebraic decay of corre-
lation functions.

FIG. 1 (color online). Quantum mechanics enters ice physics
through the tunnelling of the system from one ice configuration
to another. The leading tunnelling matrix element for spin ice is
the reversal of a set of Ising spins with closed circulation on a 6-
link hexagonal plaquette.

FIG. 3 (color online). The ice configuration possessing the
most flippable plaquettes is the squiggle state, shown here within
a 40-site tetragonal cell. Arrows show the displacement of
protons within Ic water ice or, equivalently, the orientation of
spins in spin ice. The squiggle state possesses a net magnetic

flux, ~� ¼ ~�squiggle, orientated along a [100] axis of the crystal. In

a spin-ice material this would correspond to a net magnetization
of 1=5 the value at saturation, directed along a [100] axis.
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For � ! �1, the ground state of Eq. (2) is the ice
configuration which maximizes the number of flippable
plaquettes. This is the 60-fold degenerate squiggle con-
figuration shown in Fig. 3. It is ordered, and therefore
exhibits Bragg peaks in diffraction experiments [35]. A
good measure of squiggle order is the relative density of
flippable plaquettes � ¼ Nfð�Þ=Nfð�1Þ. In Fig. 4(a), we

compare GFMC calculations of � for a series of finite-size
clusters, carried out in the squiggle-flux sector, with Padé
approximants to a series expansion in 1=� about perfect
squiggle order. The agreement between the two calcula-
tions is essentially perfect for �<�0:75, and the marked
suppression in the number of flippable plaquettes for � *
�0:3 is strongly suggestive of the melting of squiggle
order. However, perturbation theory about the exactly sol-
uble Rokhsar-Kivelson (RK) point � ¼ 1 dictates that the
ground state of Eq. (2) should be in the zero-flux sector for
� ! 1 [27,33]. And in fact, the gentle demise of squiggle
order is preempted by a ground-state level crossing be-
tween the squiggle and zero-flux sectors at � ¼ �0:50�
0:03, shown in Fig. 4(b).

These results are consistent with a first order phase
transition out of the squiggle state at � ¼ �0:5, but do
not yet confirm the existence of the quantum U(1) liquid
we are seeking. Fortunately Eq. (1) also makes specific
predictions for how the quantum U(1) liquid phase evolves

out of the RK point at � ¼ 1 [26,27,33]. Specifically, the
finite-size energy gaps E� � E0 should grow as E� �
E0 � c2�2=L where E� is the energy of the ground state

with flux ~� and c2 / 1��þ � � � [27,33]. In Fig. 5(a), we
present simulation results for E� � E0 for � & 1. We find

good agreement between GFMC simulations and perturba-
tion theory about the RK point [27,33], and a near-perfect
collapse of both data sets according to the prediction of
Eq. (1). This confirms the existence of a quantum U(1)
liquid bordering the RK point, as proposed in [27].
However, so far as real materials are concerned, the most

interesting point in the parameter space is the ‘‘quantum-
ice’’ point � ¼ 0. Does this also conform to the behavior
expected of a quantum U(1)-liquid? In Fig. 5(b), we
present simulation results for the finite-size energy gaps
of Eq. (2) at � ¼ 0. We extract the leading dependence on
system size by plotting ðE� � E0Þ=Nsites as a function of

ð�=�squiggleÞ2. Once again, the collapse of the data is

excellent, confirming the existence of a quantum U(1)
liquid.
The ground-state phase diagram of the quantum-ice

model Eq. (2) is summarized in Fig. 2. For �<�0:5,
the ground state is the complex squiggle order shown in
Fig. 3. For �>�0:3 we find unambiguous evidence for a
quantum liquid phase which is well-described by the U(1)
(lattice) gauge theory of quantum electromagnetism, and
so will exhibit both algebraic decay of correlations and
deconfined fractional excitations [26,27]. This quantum
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FIG. 4 (color online). Evidence for a phase transition out of the
squiggle state. (a) Melting of squiggle order within the squiggle-

flux sector ~� ¼ ~�squiggle. The relative number of flippable pla-

quettes � ¼ Nfð�Þ=Nfð�1Þ is calculated using quantum

Monte Carlo simulations for clusters of 160 to 1080 sites. The
solid lines show different Padé approximants to the series
expansion about a perfectly ordered squiggle state.
(b) Ground-state level crossing between the flux sector associ-
ated with the squiggle state, and the zero-flux sector associated
with the quantum U(1) liquid. The ground-state energy per site is
calculated for clusters of 432, 1024, and 2000 sites (squiggle-
flux sector) and 160, 540, and 1280 sites (zero-flux sector), using
quantum Monte Carlo simulation. A clear crossing is observed
for � ¼ �0:50� 0:03.
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FIG. 5 (color online). Evidence for the existence of a quantum
U(1) liquid. (a) Flux dependence of finite-size energy gaps E� �
E0 for parameters bordering the RK point, � ¼ 1. Results are
plotted for quantum Monte Carlo simulation of a 1280-site
cluster (solid points) and perturbation theory about the RK point
(open black circles). The dashed line indicates the scaling
expected for a quantum U(1) liquid, following Eq. (1).
(b) Flux dependence of finite-size energy gaps at the quantum-
ice point, � ¼ 0. Results are obtained using quantum
Monte Carlo simulation for 320-, 640-, and 1280-site clusters,
and in exact diagonalization for an 80-site cluster. The dashed
line indicates the scaling expected for a quantum U(1) liquid.
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U(1) liquid phase terminates in an RK point at � ¼ 1, and
therefore the quantum-ice point � ¼ 0 lies deep within it.
For �0:5<�<�0:3 simulation results depend in detail
on the geometry of the cluster chosen. However, we tenta-
tively conclude that a single, first order phase transition
takes place between the squiggle and U(1)-liquid phases
for � ¼ �0:5. This phase diagram should be contrasted
with those for bosonic [36] and fermionic [37] quantum-ice
models on the 2D square lattice, where all phases are
ordered and confining for �< 1. In short—2D quantum-
ice models are ordered and confining, but the 3D quantum-
ice model solved here is not.

So far as electronic charge ices are concerned, this work
should be regarded as a ‘‘warm-up’’ exercise, since Eq. (2)
does not allow for the spin or Fermi statistics of the
electrons [5,33,37,38]. Similarly, the application of these
ideas to hexagonal water ice depends crucially on the
generalization to a different lattice, and the role of more
general ionic defects [24]. However, the model we have
solved may give a good account of ‘‘quantum spin-ice’’
materials such as Tb2Ti2O7 [39–42], Pr2Sn2O7 [43,44],
and Yb2Ti2O7 [45–48], where quantum fluctuations of
magnetic moments provide a route to tunnelling between
spin-ice states. And in this context it is interesting to ask
how a quantum ice might be distinguished in experiment
on a spin-ice material?

The signal feature of a classical ice state is the presence
of pinch-point singularities in the static structure factor
SðqÞ [18]. These reflect the fact that the spins or charges
which make up the ice state have correlations of 3-
dimensional dipolar form [7,13,15]. In contrast, in a quan-

tum ice, static correlations take on the form of dipoles in
ð3þ 1Þ dimensions [27,28] and as a result, the pinch-point
singularities in SðqÞ are eliminated. To illustrate this, in
Fig. 6 we present GFMC simulation results for SðqÞ for a
quantum spin ice, calculated directly from Eq. (2). Results
for the RK point � ¼ 1, where the correlations are classi-
cal, clearly show pinch points at reciprocal lattice vectors.
However, at the quantum-ice point, � ¼ 0, there is a
marked suppression of spectral weight around the same
reciprocal lattice vectors. As a consequence, the angle-
integrated structure behaves as Sðjqj ! 0Þ / jqj, while in
a classical spin ice Sðjqj ! 0Þ ! const. This linear-jqj
behavior at small jqj is consistent with published results
for Pr2Sn2O7 [43]. It might also be interesting to reexamine
elastic neutron scattering data on other pyrochlore antifer-
romagnets in the light of these results [49]. These issues
will be explored further elsewhere [50].
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