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We show that, for Galilean invariant quantum Hall states, the Hall viscosity appears in the electro-

magnetic response at finite wave numbers q. In particular, the leading q dependence of the Hall

conductivity at small q receives a contribution from the Hall viscosity. The coefficient of the q2 term

in the Hall conductivity is universal in the limit of strong magnetic field.
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Introduction.—Quantum Hall states have been shown to
possess, in addition to the Hall conductivity, a new prop-
erty called the Hall viscosity [1,2]. The Hall viscosity
breaks parity, is dissipationless and can be defined at
zero temperature. It has been shown recently [3,4] that
the Hall viscosity is related to a topological property of
the quantum Hall state—the Wen-Zee shift [5].

One may ask how the Hall viscosity can be measured. As
originally defined, the Hall viscosity is related to the stress
response of the system to metric perturbations. Such per-
turbations can be, in principle, mimicked by lattice vibra-
tions (sound waves). It has also been suggested that the
Hall viscosity determines the stress created by an inhomo-
geneous electric field [6]. In this Letter we show that, for
quantum Hall states of systems with Galilean invariance
and made up of particles of the same charge-mass ratio, the
Hall viscosity can be, in principle, determined from elec-
tromagnetic response alone. We shall show this result first
using intuitive physical arguments, and then by employing
the formalism of nonrelativistic diffeomorphism invari-
ance, applied to the low-energy effective action of the
Hall liquid.

Main result.—Consider a quantum Hall state in finite
magnetic field B. First we concentrate on the case when the
interaction between particles is short-ranged. (The case of
Coulomb interaction will be treated later in the paper.) Let
us turn on a static longitudinal electric field E ¼ �r�
where � is the scalar potential. We take � to vary in space
with some wave-vector q pointing along the x direction
and measure the Hall current jy (see Fig. 1). The propor-

tionality between jy and Ex is the wave-vector dependent

Hall conductivity,

jyðqÞ ¼ �xyðqÞExðqÞ: (1)

In the limit q ! 0, �xyðqÞ approaches the universal value,
determined by the rational filling factor �: �xyð0Þ ¼
�e2=ð2�@Þ. In general, �xy has a nontrivial dependence

on the wave number q.
We will show that, for a Galilean invariant system of

electrons, the coefficient C2 of the first correction in the
low-q expansion of the Hall conductivity

�xyðqÞ
�xyð0Þ ¼ 1þ C2ðq‘Þ2 þOðq4‘4Þ; (2)

can be related to the Hall viscosity �a and the function
�ðBÞ which is the energy density (energy per unit area) as
function of the external magnetic field �ðBÞ at fixed filling
factor,

C2 ¼ �a

@n
� 2�

�

‘2

@!c

B2�00ðBÞ: (3)

Here, ‘¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=jejBp

is the magnetic length,!c ¼ jejB=mc
is the cyclotron frequency, and n is the density of electrons.
Using the relationship between �a and the shift S: �a ¼

@nS=4 [3,4], the first term in the right-hand side of Eq. (3)
can be written as S=4, which makes clear that the magni-
tude of this contribution is robust (i.e., does not depend on
interactions). The second contribution involves the func-
tion �ðBÞ and is not universal. However, its magnitude can
be extracted independently by measuring currents created
by weak inhomogeneous perturbations of the magnetic
field �B,

j ¼ �c�00ðBÞẑ� r�B: (4)

Hence, by measuring the electromagnetic response of the
system to inhomogenous electric and magnetic fields, one
can determine the Hall viscosity.
The situation becomes simpler in the limit of high

magnetic fields (i.e., that of no mixing between Landau
levels) in which the energy �ðBÞ becomes that of non-
interacting electrons in a magnetic field. For the integer
quantum Hall state with � ¼ N, the energy density �ðBÞ ¼
ðN2=4�Þ@!c=‘

2, and the shift S ¼ N, so we have
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FIG. 1. Pattern of flow in an inhomogeneous electric field.
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�xyðqÞ
�xyð0Þ ¼ 1� 3N

4
ðq‘Þ2 þOðq4‘4Þ for � ¼ N: (5)

The result coincides with what has been computed in the
literature (�xy is proportional to �1 in the notation of

Ref. [7]). For fractional quantum Hall states with � < 1,
�ðBÞ ¼ ð�=4�Þ@!c=‘

2, therefore C2 ¼ 1
4S � 1. In par-

ticular, for Laughlin’s states with � ¼ 1=ð2kþ 1Þ, the shift
S ¼ 2kþ 1 [5], so

�xyðqÞ
�xyð0Þ ¼1þ2k�3

4
ðq‘Þ2þOðq4‘4Þ; �¼ 1

2kþ1
: (6)

In general, for any quantum Hall state, we can find the q2

correction to �xyðqÞ from the value of the shift S and the

total energy, as a function of the magnetic field.
Physical argument.—Before presenting the mathemati-

cal proof of the statement made above, we will give a
physical derivation. We will show that the two contribu-
tions to C2 come from two different physical effects.

First let us note that to first approximation, the Hall fluid
moves along the y direction with a velocity that depends on
x (see Fig. 1),

vyðxÞ ¼ � cExðxÞ
B

: (7)

This velocity is determined by balancing electric and mag-
netic forces acting on a fluid volume. However, the flow (7)
is a shear flowwith a nonzero strain rate. The Hall viscosity
leads to an additional stress in the system, which in turn
induces a correction to the current.

Let us compute the magnitude of the this effect. The
strain rate Vxy ¼ 1

2@xvy induces, through the Hall viscosity,

an additional contribution to the stress, �xx ¼ ��yy ¼
2�aVxy The x dependence of �xx leads to an additional

force acting on each volume element of the fluid along the
x axis: fx ¼ �@x�xx. This force induces a correction to the
Hall current equal to

�jy ¼ � c

B
fx ¼ ��ac2

B2
E00
x ðxÞ: (8)

We thus find the first correction to �xy,

�ð1Þ
xy ðqÞ ¼ �ac2

B2
q2: (9)

The second effect is related to the fact that the fluid flow,
in addition to having a shear rate, also has a nonzero local
angular velocity:

�ðxÞ ¼ 1

2
@xvy ¼ � cE0

xðxÞ
2B

: (10)

This local rotation acts as an effective magnetic field, equal
to �B ¼ 2mc�=e (found by equating the Coriolis force
with the Lorentz force from �B.) On the other hand,
the quantum Hall fluid is a diamagnetic material. with

magnetic moment density M ¼ �@�=@B. For a constant
magnetic field, M is constant. But due to the fluctuations
�B there is an inhomogeneous contribution to the magnetic
moment density,

�M ¼ � @2�

@B2
�B ¼ �00ðBÞmc2E0

xðxÞ
eB

: (11)

This fluctuating magnetic moment density leads to an
additional electromagnetic current, j ¼ cẑ� rM:

jy ¼ �00ðBÞmc3E00
x ðxÞ

jejB : (12)

We find the second contribution to the Hall conductivity,

�ð2Þ
xy ðqÞ ¼ �mc3�00ðBÞ

jejB q2: (13)

The finite-wave-number correction to the Hall conductivity

is �ð1Þ
xy þ �ð2Þ

xy . Elementary algebraic manipulations bring it
to the form of Eqs. (2) and (3).
Diffeomorphism invariance.—We now formally prove

the result derived above by constructing a low-energy
effective theory of the quantum Hall state. As the quantum
Hall state is gapped, the effective action is as a local
functional of the external fields. Expanding in momentum
to lowest order, it is simply the Chern-Simons action. In
order to reproduce the q2 correction to �xy we need to go

beyond leading order.
We shall make use of the nonrelativistic diffeomorphism

invariance, introduced in Ref. [8]. Our strategy is to couple
our system to gravity and find out the symmetries of the
action. These symmetries are inherited by the low-energy
effective theory, and impose nontrivial constraints to the
effective Lagrangian.
We consider a quantum Hall state in the presence of an

external gauge field A	ðt;xÞ and a spatial metric gijðt;xÞ.
For example, for the case of free fermions we assume the
action to be

S0 ¼
Z

dtd2x
ffiffiffi
g

p �
i

2
ðc y@tc � @tc

yc Þ þ A0c
yc

� gij

2m
ð@ic y þ iAic

yÞð@jc � iAjc Þ
�
: (14)

We will set @ ¼ 1 and absorb an e=c factor into the
normalization of the gauge potential Ai. Most of the time
wewill set the spatial metric to be flat (gij ¼ �ij) at the end

of calculations, but it will be useful to consider a general
metric in the intermediate steps.
The action (14) is invariant under reparametrization of

spatial coordinates xk ! xk þ 
k, where 
k depends both
on space and time, 
k ¼ 
kðt;xÞ. The passive form of the
transformations is

�A0 ¼ �
k@kA0 � Ak
_
k; (15)
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�Ai ¼ �
k@kAi � Ak@i

k �mgik _
k; (16)

�gij ¼ �
k@kgij � gkj@i

k � gik@j


k; (17)

�c ¼ �
k@kc : (18)

The Galilean transformation is a special case with 
k ¼
vkt. As explained in Ref. [8], the transformations above
can be motivated by taking a nonrelativistic limit of rela-
tivistic diffeomorphisms.

Interactions can be introduced in a way which preserves
the diffeomorphism invariance. For example, by adding
to (14)

S¼ S0 þ
Z

dtd2x
ffiffiffi
g

p �
�c yc�� 1

2
gij@i�@j��m2

�

2
�2

�

(19)

one introduces an attractive potential of range m�1
� be-

tween the particles. The new action is diffeomorphism
invariant if � transforms as a scalar �� ¼ �
k@k�. A
generic potential decaying faster than an exponential can
be represented by an infinite number of mediating fields,
and so coupling to the external metric can be made com-
patible with diffeomorphism invariance.

Coulomb interactions can also be introduced, but now
the field mediating the interaction propagates in three
spatial dimensions. We can assume that the spatial metric
does not depend on the third direction

S ¼ S0 þ
Z

dtd2x
ffiffiffi
g

p
a0ðc yc � n0Þ

þ 2�"

e2

Z
dtd2xdz

ffiffiffi
g

p ½gij@ia0@ja0 þ ð@za0Þ2�: (20)

(" is the dielectric constant). We have included a neutral-
izing background with density n0. The full action is diffeo-
morphism invariant if a0 transforms as a scalar:
�a0 ¼ �
k@ka0.

Power counting.—We now start constructing the low-
energy effective field theory of the quantumHall states. For
incompressible states, there is no low-energy excitations,
and we can integrate out c . If interactions are short-
ranged, the fields � mediating interactions can also be
integrated out. Thus the effective Lagrangian is a local
function of the external fields A	, gij and their derivatives.

The effective action must be invariant under (15)–(17).
To organize a derivative expansion, one needs a power-

counting scheme with a small parameter. There is an
ambiguity in choosing the scheme, as the time derivative
@t and spatial derivatives can be chosen to be independent
expansion parameters. For definiteness, in this Letter we
use the following scheme. All quantities will be regarded
as proportional to some powers of a small parameter �,
times some powers of !c and ‘. The external fields are
assumed to vary slowly in space and time,

@i � �‘�1; @t � �2!c: (21)

As for the magnitude of external perturbations, we assume

�A0 � �0!c; �Ai � ��1‘�1; �gij � 1: (22)

In this scheme, we allow for order one variations of the
metric, the magnetic field (�B� �0‘�2) and the chemical
potential (A0). In further formulas, the electric and mag-
netic fields are defined as

Ei¼@iA0�@0Ai; B¼F12ffiffiffi
g

p ¼�ij@iAjffiffiffi
g

p �"ij@iAj; (23)

so Ei ¼ Oð�Þ and B ¼ Oð1Þ.
Chern-Simons and Wen-Zee terms.—Two important in-

gredients in our construction of the effective field theory
are the Chern-Simons action and the Wen-Zee action. The
Chern-Simons action is

SCS ¼ �

4�

Z
dtd2x�	��A	@�A�; (24)

and is of order �0 in our power-counting scheme. This will
be the leading term in the effective action. To construct the
Wen-Zee action, we first define the spin connection. We
introduce a spatial vielbein eai , a ¼ 1, 2 so that gij ¼ eai e

a
j

and �abeai e
b
j ¼ "ij. The vielbein is defined up to localOð2Þ

rotations in a space. If we now define the connection !	,

!0 ¼ 1
2�

abeaj@0e
b
j ; (25)

!i ¼ 1
2�

abeajrie
b
j ¼ 1

2ð�abeaj@iebj � "jk@jgikÞ; (26)

then under local Oð2Þ rotations !	 transforms like an

Abelian gauge potential !	 ! !	 � @	�. By using !	

we can construct the following gauge invariant action

SWZ ¼ �

2�

Z
dtd2x�	��!	@�A�: (27)

This action is of order �2 in our power-counting scheme
and has to be included if we work to that order. The !d!
Chern-Simons term, on the other hand, is of order �4 and
will not be considered.
The coefficient � is related to the shift S. Indeed, the

‘‘torsion magnetic’’ field @1!2 � @2!1 ¼ 1
2

ffiffiffi
g

p
R where R

is the scalar curvature. Integrating by parts, the Wen-Zee
action contains a term

�

2�
�	��!	@�A� ’ �

4�

ffiffiffi
g

p
A0Rþ � � � ; (28)

which gives a contribution to the particle number density
that is proportional to the scalar curvature. If the quantum
Hall state lives on a closed two dimensional surface, then
the total number of particles is
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Q ¼
Z

d2x
ffiffiffi
g

p
j0 ¼

Z
d2x

ffiffiffi
g

p �
�

2�
Bþ �

4�
R

�

¼ �N� þ �; (29)

where N� is the total number of magnetic fluxes and  ¼
2ð1� gÞ is the Euler character. Comparing to the definition
of S in Ref. [5], we find � ¼ 1

2�S. For the integer Quantum
Hall state with � ¼ N, � ¼ N2=2. For Laughlin’s states
� ¼ 1=2.

The Wen-Zee action gives rise to Hall viscosity [9].
Expanding the WZ term to quadratic order, one finds,
among other terms,

SWZ ¼ � �B

16�
�ij�gik@t�gjk þ � � � ; (30)

which implies the presence of an odd term in the stress
tensor two-point function, or Hall viscosity. The value of
the Hall viscosity is �a ¼ �B=4� ¼ 1

4Sn. This relation-

ship between the Hall viscosity and the shift has been
derived previously in Ref. [4].

Most general effective action.—It is straightforward to
verify that both SCS and SWZ are not diffeomorphism
invariant, and need to be corrected. In fact, to order
Oð�2Þ, the most general effective action can be written as
S ¼ R

dtd2x
ffiffiffi
g

p P
5
i¼1 Li, where Li (i ¼ 1; . . . ; 5) are five

independent general diffeomorphism invariant (to order
�2) terms

L 1 ¼ �

4�

�
"	��A	@�A� þm

B
gijEiEj

�
; (31)

L 2 ¼ �

2�

�
"	��!	@�A� þ 1

2B
gij@iBEj

�
; (32)

L 3 ¼ ��ðBÞ �m

B
�00ðBÞgij@iBEj; (33)

L 4 ¼ �1
2KðBÞgij@iB@jB; (34)

L 5 ¼ RhðBÞ; (35)

where �ðBÞ, KðBÞ, and hðBÞ are functions of B. The func-
tion �ðBÞ has the physical meaning of the energy density of
the quantum Hall state as a function of the magnetic field
B, L4, and L5 do not enter the quantities of our interest.
The next to leading order term in L1 enforces compliance
with Kohn’s theorem. The two-point function of the elec-
tromagnetic current j	 is obtained by taking the second
derivative of the effective action with respect to A	, then

setting perturbations to zero. Equivalently, we can differ-
entiate the effective action once with respect to the external
fields to get the current. We find in flat space

ji ¼ �

2�
�ijEj � 1

B

�
�

4�
�m�00ðBÞ

�
�ij@jðr �EÞ þ � � � ;

(36)

where . . . refers to term that vanish when the magnetic field
is not perturbed. Equations (2) and (3) are reproduced from
this formula.
Inclusion of Coulomb interactions.—In the case with

Coulomb interactions, one needs to take into account the
screening of the electric field. The expansion (2) and (3)
therefore applies not to �xyðqÞ but to

~� xyðqÞ ¼
�
1þ e2ðqÞ

2��q

�
�xyðqÞ ’

�
1þ �@

�
ðq‘Þ

�
�xyðqÞ;

(37)

where @ ¼ e2=ð4��‘!cÞ and ðqÞ is the static suscepti-
bility, the small-q behavior of which is determined by
Kohn’s theorem: ðqÞ ¼ �mq2=ð2�BÞ. In the limit of
high magnetic fields where @ � 1, the distinction between
�xy and ~�xy disappears.

Conclusions.—We have shown that the Hall viscosity
does not only appear in the response to gravitational fluc-
tuations, but also, under certain circumstances, in a purely
electromagnetic response function. For this one needs
Galilean invariance and that all particles have the same
charge/mass ratio, a condition satisfied in the most inter-
esting physical systems.
One notes that topological arguments alone are insuffi-

cient to determine the coefficient of the q2 term in the
finite-wave-number Hall conductivity. But topology,
coupled with nonrelativistic diffeomorphism invariance,
is powerful enough to find this coefficient [e.g., Eq. (6)].
It would be interesting to explore consequences of diffeo-
morphism invariance for other systems with topological
order, e.g., the px þ ipy paired state or the superfluid B

phase of 3He or the compressible � ¼ 1=2 state.
Finally, the wave number dependence of the Hall con-

ductivity should be measured and checked against our
prediction. Such a measurement would be a measurement
of the Hall viscosity.
We thank T. Hughes, X. Qi, E. Witten for stimulating

discussions, and N. Read for explaining the connection
between the Wen-Zee term and Hall viscosity. This work
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Note added.—After this work was finished, we learned

that the first contribution on the right-hand side of Eq. (3)
has been derived by B. Bradlyn, M. Goldstein, and N. Read
[10]. We also learned from I. V. Tokatly that Eq. (3) can be
recovered within the model proposed in Ref. [11]. We
thank N. Read and I. V. Tokatly for communicating these
results to us.
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