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We demonstrate that the multiparticle Hanbury Brown–Twiss interferometer can be realized in a

network of nitrogen-vacancy centers: for an N-particle system, the interference effect is manifested only

in the Nth-order intensity correlation function. The interference effect can be enhanced through a

postselection process in which the multipartite Greenberger-Horne-Zeilinger entanglement is generated

and tested with Svetlichny inequality.
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The Hanbury Brown–Twiss (HBT) interferometer [1],
which was originally devised to determine the angular
diameter of stars, shows that phase-sensitive second-order
intensity correlations are observed by two spatially sepa-
rated photodetectors yet not in the intensities of individual
photodetectors. HBT effect was subsequently observed in
the laboratory by using two independent laser sources [2].
This purely quantum mechanical effect can be attributed to
the entanglement that arises from the exchange amplitudes
of the two indistinguishable photons and is detected by the
violation of Bell inequalities. Recently HBT experiments
demonstrating fermionic antibunching have been reported
for an electron source [3–6], including theoretical pro-
posals for multiple sources [7,8]. For particles emitted by
a thermal source, measurement of second-order correla-
tions, for instance, the fluctuations in intensity-intensity or
current-current correlation, yield different results, depend-
ing on the effect of particle statistics: positive (negative)
for bosonic (fermionic) sources [3]. While for special
statistics, bosonic sources can have negative correlation
(‘‘antibunching’’) [9]. In this Letter, we propose a strategy
to realize a multiparticle HBT interferometer in a network
of nitrogen-vacancy (NV) color centers in diamond [10].

The network we consider consists of N chains of NV
centers (see Fig. 1 forN ¼ 5). Each chain contains two NV
centers. The NV center is composed of a nuclear spin
I ¼ 1=2 associated with a nitrogen atom 15N substituting
for a carbon atom, and an electronic pair in the spin triplet
state S ¼ 1 [11]. The nuclear spins in the ith chain (Ci) are
labeled from outside to inside as si;1 and si;2. The electronic
spin associated with si;j is labeled as ei;j. The system of NV

centers is a promising candidate for quantum information
processing, as it can be manipulated at room temperature
and the nuclear spin has a long coherence time [12]. The
nuclear and electronic spins in a single NV center are
coupled through a hyperfine Hamiltonian Hn;e � AIzSz,
where A is the coupling strength between the nuclear

spin Iz and the electronic spin Sz. Two levels (mS ¼ 0, 1)
of the electronic spin are utilized as a qubit due to the
unequally spaced levels rendered by zero-field splitting
[13]. The nuclear spin serves to store quantum information
and the electronic pair is used to read out and mediate
interactions between nuclear spins of neighboring NV
centers. The electronic spin manipulation can be achieved
with a microwave-field excitation, and also a controlled-Z
gate between the nuclear and electronic spins is realized
through the time evolution of the hyperfine Hamiltonian

FIG. 1 (color online). A network of 10 NV centers (grouped in
5 chains) in a slab of diamond crystal (for illustration purposes
only). Each NV center consists of a nuclear spin I ¼ 1=2 (red
arrows, labeled as si;j), serving for storage of quantum informa-

tion, and an electronic spin S ¼ 1 (blue arrows), serving for
transmission and readout of quantum information. The electronic
spins in neighboring NV registers are coupled through the dark
spin chain data bus (black arrows) formed by the dipole coupling
of implanted nitrogen impurities.
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[14]. Therefore, single-qubit and controlled-NOT (CNOT)
operations, i.e., universal quantum gates [15] between the
nuclear and electronic spins in a single NV center are
accomplished. A related experiment was demonstrated in
2004 [16].

The electronic spins in neighboring NV centers are
coupled through a dark spin chain data bus (DSCB).
DSCB is composed of implanted nitrogen impurities
coupled through dipole-dipole interactions. Very recently,
Yao et al. showed that the states of the electronic spins in
neighboring NV centers can be transferred through DSCB
even if the states of DSCB are random [17]. Here we briefly
review the mechanism of this scheme. The Hamiltonian for
DSCB containing m nitrogen impurities can be effectively
written in the form of an XX model:

HDSCB ¼ Xm�1

i¼1

2�ðSxi Sxiþ1 þ Syi S
y
iþ1Þ; (1)

where � is the nearest-neighbor dipole-dipole coupling
strength between impurity spins. Thus the total
Hamiltonian describing the electronic spins in neighboring
NV centers coupled through DSCB of m nitrogen impuri-
ties is

H¼ 2gðSxNV1
Sx1 þ SyNV1

Sy1 þ SxNV2
Sxm þ SyNV2

SymÞ þHDSCB;

(2)

where Sx;yNVi
are the electronic spin operators of the NV

center i (i ¼ 1, 2), and g, the coupling strength between the
NV centers and DSCB, is controllable by utilizing the
triplet energy-level structure of the electronic spins in
NV centers [10].

The Hamiltonian HDSCB can be transformed to a sum-
mation ofm noninteracting fermionic modes with different
energies [18], and the energy-level spacing of the elec-
tronic spins in NV centers can be tuned into resonance with
a particular fermionic mode [17]. In this situation, the
effective Hamiltonian governing the time evolution is

Heff ¼ tk½fkðcy0 þð�1Þk�1cymþ1Þþfyk ðc0þð�1Þk�1cmþ1Þ�;
(3)

where tk ¼ g
ffiffiffiffiffiffiffiffi
2

mþ1

q
sin k�

mþ1 , c0 and cmþ1 are the fermionic

operators associated with the electronic spins in neighbor-
ing NV centers: ci ¼ ðSxi � iSyi Þ

Q
i�1
j¼0ð2SzjÞ, (i ¼ 0, mþ 1

correspond to NV1;2 respectively), and fyk (fk) is the cre-

ation (annihilation) operator of the particular fermionic

mode: fyk ¼
ffiffiffiffiffiffiffiffi
2

mþ1

q P
m
i¼1 sin

ik�
mþ1 c

y
i (k is an integer and 1 �

k � m). For a proper time evolution the states of the two
boundary fermions are exchanged up to some phases (�)
depending on the states of all the fermions. The phases can
be eliminated in a subsequent exchange of the states of
boundary spins [17]. Furthermore, in a network of NV
centers the direction of the state exchange (i.e., transfer)
can be controlled by ensuring that the NV center in
question is resonant only with the fermionic mode in the

desired direction, achieved with differing length of relevant
DSCBs, i.e., different energy spectrums of fermionic
modes. Recently, there have been experiments for studying
the coupling between NV centers and the surrounding
nitrogen impurities [19–21], which pave the way for real-
izing the state transfer between NV centers via DSCB.
Next we consider the realization of the HBT interfer-

ometer. First, we introduce a nonlocal Hadamard gate
between the two nuclear spins of neighboring NV centers
in the chain Ck, which is essential to the realization of the
HBT interferometer.

UH;k ¼ 1ffiffiffi
2

p ðei�10 j10ik þ ei�01 j01ikÞh10jk þ 1ffiffiffi
2

p ðei�0
10 j10ik

þ ei�
0
01 j01ikÞh01jk þ j00ikh00jk þ j11ikh11jk; (4)

where jijik denotes the state of sk1 being jii and sk2 being
jji [j0i (j1i) is spin down (up)], and �0

01 ¼ �01 ��10 þ
�0

10 þ l� (l is an odd integer) by using Uy
H;kUH;k ¼

identity. The gate UH;k can be realized in the following

way. We note that UH;k is decomposed into several CNOT

gates and single-spin operations [15]: UH;k ¼
XU�AYBYCX, where X ¼ C2NOT1 flips sk;1 if sk;2 is up,

Y ¼ C1NOT2 is reversely defined, U� adds a phase ei� to
sk;1 if it is up [� ¼ ð�01 þ�0

10 þ �Þ=2], A ¼
Rzð�ÞRyð�=2Þ, B ¼ Ryð��=2ÞRzð� ð�þ �Þ=2Þ, C ¼
Rzðð�� �Þ=2Þ [Rið�0Þ ¼ expð�i�0	i=2Þ, 	i are Pauli
matrices of sk;2], � ¼ �01 ��10, � ¼ �=2, and � ¼
�0

10 ��10 þ �. Each operation in the decomposition can

be performed; in particular, the CNOT gate is further de-
composed into two local Hadamard gates with a
controlled-Z gate in between [15]. The controlled-Z gate
is realized by performing the same gate within a single NV
center and transmitting states via DSCB [17].
The network is prepared in the initial state

j10i1j10i2; . . . ; j10iN , i.e., only the N outer nuclear spins
are in the up state. We then performUH;k in Eq. (4) for all k
so that the resulting state is

YN
k¼1

ei�10 j10ik þ ei�01 j01ikffiffiffi
2

p : (5)

In the network in the state (5), we rotate the states of the N
inner nuclear spins counterclockwise through one inner-
spin position, a process which we shall call counterclock-
wise rotation of inner nuclear spins or CRINS. This is
achieved by sequentially exchanging the states of the N
inner spins (N � 1) times: s1;2 $ s2;2, followed by s2;2 $
s3;2 and so forth (see Fig. 1). The exchange of the states of

two spins is similar to the process of realizing UH;k, i.e.,

replace UH;k with a swap gate (two CNOT gates). After this

process is completed, the total state becomes

jc i ¼ 1ffiffiffiffiffiffi
2N

p X
fikg

ei
i1 ;i2 ;...;iN ji1iji2i; . . . ; jiNi; (6)

where jiki 2 fj00ik; j01ik; j10ik; j11ikg. The values of

i1;i2;...;iN and ik in (6) are not given explicitly as it is not
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relevant to the present discussion. Next we consider a

specific observable OðkÞ
rk defined for the kth spin chain (rk

indicates multiple choices)

OðkÞ
rk ¼ X

i;j

CðkÞ
rk;i;j

jiikhjjk þ
X
i0;j0

C0ðkÞ
rk;i

0;j0 ji0ikhj0jk; (7)

where i; j 2 f10; 01g and i0; j0 2 f00; 11g. We note that

OðkÞ
rk preserves the parity of the nuclear-spin excitations in

the kth chain: two eigenvectors (say j�ðkÞ
1 i, j�ðkÞ

2 i) of OðkÞ
rk

are in the odd-parity subspace spanned by fj10ik; j01ikg and
the other two (say j�ðkÞ

3 i, j�ðkÞ
4 i) are in the even-parity

subspace spanned by fj00ik; j11ikg, where �ðkÞ
i ’s are the

eigenvalues of OðkÞ
rk . As OðkÞ

rk is Hermitian, i.e., OðkÞy
rk ¼

OðkÞ
rk , only the off-diagonal elements contain phases,

e.g., CðkÞ
rk;01;10

¼ jCðkÞ
rk;01;10

jei�ðkÞ
rk ¼ CðkÞ�

rk;10;01
and C0ðkÞ

rk;11;00
¼

jC0ðkÞ
rk;11;00

jei�0ðkÞ
rk ¼ C0ðkÞ�

rk;00;11
. Let O ¼ Qn0

j¼1 O
ðkjÞ
rkj

, i.e., a joint

operator of a subset of size n0 from the set

fOð1Þ
r1 ; O

ð2Þ
r2 ; . . . ; O

ðNÞ
rN g. Then it can be shown that the corre-

lation function hc jOjc i can contain phases �ðkÞ
rk and �0ðkÞ

rk

only when n0 ¼ N. Furthermore, hc jOjc i can manifest
itself as an intensity correlation function, i.e., the correla-
tion function of the excitation numbers of theN outer spins

in the network: hc 0jQn0
j¼1 	

y
kj;1

	kj;1jc 0i, where 	i;j ¼
ð	x

i;j � i	y
i;jÞ=2 and jc 0i ¼ UðkÞy

rk jc i. The unitary operator
UðkÞy

rk consists of the four row eigenvectors of OðkÞ
rk : O

ðkÞ
rk ¼

UðkÞ
rk �

ðkÞUðkÞy
rk with �ðkÞ a diagonal matrix in the basis jijik,

(i; j 2 f0; 1g) encompassing the four eigenvalues of OðkÞ
rk .

Moreover, the above two correlation functions also equal
the following normal ordered n0th-order intensity correla-
tion function defined similarly as in quantum optics [22]:

Gðn0Þðkn0 ; . . . ; k1; k1; . . . ; kn0 ; tÞ
¼ h�j	y

kn0 ;1
ðtÞ; . . . ; 	y

k1;1
ðtÞ	k1;1ðtÞ; . . . ; 	kn0 ;1

ðtÞj�i; (8)
where 1 � k1 < k2 < � � �< kn0 � N, j�i ¼ Qn0

j¼1 j10ikj is
the initial product state of the chains Ck1 ; Ck2 ; . . . ; Ckn0

,

	kj;1ðtÞ is the Heisenberg annihilation operator of the

spin skj;1, and t is the duration of all the previous operations

performed on the system (including UH;kj , CRINS and

U
ðkjÞy
rkj

). The measurement of the correlation function (8)

can be realized through a repetitive fluorescence detection
of theN outer spins [23,24]. In this perspective, we say that
hc jOjc i fully manifests the HBTeffect (see Supplemental
Material [25] for an interpretation of the above discussion).

An interesting case of such OðkÞ
rk is

OðkÞ
rk ¼ 1

2ðe�i�ðkÞ
rk j10ikh01jk þ ei�

ðkÞ
rk j01ikh10jk þ j10ikh10jk

þ j01ikh01jkÞ þ j11ikh11jk; (9)

for which UðkÞy
rk can be calculated and is realized by per-

forming UH;k in Eq. (4) with �10 ¼ �01 � �=2 ¼
��0

10 þ �=2 ¼ �ðkÞ
rk =2þ �=4.

The HBT effect originates from the interference of the
different paths for the evolution of spin excitations. To see
this, first we note that the Hadamard gate in Eq. (4) is
analogous to the action of a beam splitter in optics [26],

i.e., for j10ii ! ðei�10 j10ii þ ei�01 j01iiÞ=
ffiffiffi
2

p
, the initial ex-

citation is equally reflected (ei�10 j10ii) and transmitted

(ei�01 j01ii). Consider OðkÞ
rk to be Eq. (9). In this situation,

hc 0jQn0
j¼1 	

y
kj;1

	kj;1jc 0i ¼ hc jQn0
j¼1 O

ðkjÞ
rkj

jc i, as men-

tioned earlier. Since for n0 <N this correlation function

contains no phases�ðkÞ
rk and�0ðkÞ

rk , we only consider the case
of n0 ¼ N. It can be directly calculated and equals

�
cos

�

0 þ

XN
k¼1

�ðkÞ
rk

�
þ 1

��
22N�1; (10)

where 
0 ¼ Nð�10 ��01Þ. We note that only
j10i1j10i2; . . . ; j10iN has a contribution. This state results
from the interference of the following two paths: (1) the
initial N outer spin excitations are reflected back twice by
the ‘‘beam splitters’’ [see Fig. 2(a)]; and (2) they transmit
through the ‘‘beam splitters’’ and the excitation in the
chain Ck transfers to the chain Ck�1 (C0 � CN) via
CRINS. Subsequently, all the excitations transmit through
the ‘‘beam splitters’’ and arrive at the outer spin positions
[see Fig. 2(b)]. The two paths, possessing probability

amplitudes 2�N exp½iðN�10 þ
P

N
k¼1 �

ðkÞ
rk =2Þ� � d1 and

2�N exp½iðN�01 �
P

N
k¼1 �

ðkÞ
rk =2Þ� � d2, respectively, in-

terfere with each other because of the indistinguishability
of the N excitations. The interference gives rise to jd1 þ
d2j2 for the probability of all the outer spins being up,

which equals hc 0jQN
k¼1 	

y
k;1	k;1jc 0i.

The HBT effect can be considerably enhanced through a

postselection process as shown below. SinceOðkÞ
rk under the

state jc i can be measured through determining the four

results of f	y
k;1	k;1; 	

y
k;2	k;2g, i.e., fi; jg with i; j 2 f0; 1g

under jc 0i, one could locally determine whether the mea-

surement results of the observable set fOð1Þ
r1 ; O

ð2Þ
r2 ; . . . ; O

ðNÞ
rN g

originate from the contributions of jc Gi or jc 0i (see
Supplemental Material [25] for their expressions and the
reason). Namely, if the contribution is from jc 0i, there is at
least one f	y

k;1	k;1; 	
y
k;2	k;2g for some k that has the result

of either f1; 1g or f0; 0g. Therefore, by discarding these
results and renormalizing the distribution of the retained
results, one actually postselects the GHZ entanglement

(i.e., the state jc Gi) [27]. For instance, choose OðkÞ
rk to be

(9). Then hc jQN
j¼1 O

ðjÞ
rj jc ið¼ hc 0jQN

j¼1 	
y
j;1	j;1jc 0iÞ

after postselection equals ½cosð
0 þPN
k¼1 �

ðkÞ
rk Þ þ 1�=2N,

an exponential enhancement compared with (10). More
generally, we note that a generic GHZ state is of the

form ðj’1ij’2i . . . j’Ni þ j’0
1ij’0

2i . . . j’0
NiÞ=

ffiffiffi
2

p
, where

h’kj’0
ki ¼ 0 for all k [27]. Thus the state jc i of Eq. (6)

can be divided into 2N�1 pairs of states and each pair is a
GHZ-type state (see proof of the lemma in Supplemental
Material [25]). One can postselect not only jc Gi but also
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any other types of GHZ states by appropriately extracting

the measurement results of f	y
k;1	k;1; 	

y
k;2	k;2g for 1 � k �

N � 1 (the Nth result is determined by the previous ones).
The correlation function (CF) for the state jc i is a sum of
the correlation functions (CFi) for 2

N�1 GHZ-type states
with respective fractions Pi (the normalization constant of

each postselected distribution): CF ¼ P
2N�1

i¼1 PiCFi. This is
analogous to the decomposition of the interferometric
fringe of the polychromatic light into those of monochro-
matic lights in a double-slit experiment.

The GHZ entanglement generated in the postselection
process superposes two macroscopically distinct states as
described in the previous paragraph. It shows the incon-
sistency of the elements-of-reality concept presented in the
Einstein-Podolsky-Rosen paper [28] and has applications
in multipartner quantum cryptography [29] and communi-
cation complexity tasks [30]. To test the nonlocality of
GHZ entanglement, one could employ the Svetlichny in-
equality jhS�N ij � 2N�1, where S�N is generated via recur-

sive relations S�N ¼ S�N�1O
ðNÞ
1 	 S	N�1O

ðNÞ
2 with OðNÞ

1;2

being two choices of OðNÞ
rk defined previously [31]. The

N-particle Svetlichny inequality is maximally violated by
the N-particle GHZ states and the violation rules out all
hybrid local-nonlocal hidden variable models. Specifically,

consider the expectation value of
Q

N
k¼1 O

ðkÞ
rk , i.e., the last

equation of Sec. I of the Supplemental Material [25]. It can
be verified that the equation is multiplied by 2N�1 after
postselection. Comparing it with Eq. (11) of Ref. [31],
we find that the Svetlichny inequality can be maximally

violated by a multiplication factor
ffiffiffi
2

p
if we choose

�ðkÞ
rk ¼ ð�ðkÞ

rk � 
0=NÞ.
In conclusion, we have proposed a scheme to realize the

multiparticle Hanbury Brown–Twiss interferometer in a
network of NV centers. The interference effect can be
enhanced considerably through the postselection to obtain
multipartite Greenberger-Horne-Zeilinger entanglement
whose nonlocality can be tested by Svetlichny
inequality.
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