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We report magnetic field orientation-dependent measurements of the superconducting upper critical

field in high quality single crystals of URu2Si2 and find the effective g factor estimated from the Pauli

limit to agree remarkably well with that found in quantum oscillation experiments, both quantitatively and

in the extreme anisotropy (� 103) of the spin susceptibility. Rather than a strictly itinerant or purely local

f-electron picture being applicable, the latter suggests the quasiparticles subject to pairing in URu2Si2 to

be ‘‘composite heavy fermions’’ formed from bound states between conduction electrons and local

moments with a protected Ising behavior. Non-Kramers doublet local magnetic degrees of freedom

suggested by the extreme anisotropy favor a local pairing mechanism.
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Our understanding of themechanisms of pairing in super-
fluids [1,2] and conventional superconductors [3] is largely
contingent upon full characterization of the fermionic ex-
citations within the normal state. Yet such a situation is far
from realized in unconventional superconductors in prox-
imity to magnetism [4–7]. At stake is the issue of whether
the superconductivity is best described in terms of
momentum-space [8,9] or real-space [10–12] pairing.
Complicating matters in rare earth and actinide supercon-
ductors is the propensity for the coupling of the conduction
electrons to local magnetic degrees of freedom to cause the
elementary excitations to depart significantly from those of
regular band electrons [13–15]—a situation that remains
poorly understood in actinide materials owing to ambiguity
as to the relevant magnetic degrees of freedom [16–21].

In this Letter, we find that, in spite of the seemingly
intractable nature of the electronic structure of URu2Si2,
the behavior of the superconducting upper critical field in
high quality single crystals is decidedly simple. Rather
than fitting directly to a model [22–24], we compare the
estimated effective g factor of the paired quasiparticles
determined by using the Pauli limit [25] against that of
the unpaired quasiparticles determined from spin zeros in
magnetic quantum oscillation experiments [24,26]. We
find the two to be in excellent quantitative agreement
over a broad angular range, establishing URu2Si2 as an
ideal example of a Pauli-limited heavy fermion supercon-
ductor. In doing so, however, we uncover a large effective g
factor with an extreme uniaxial anisotropy characteristic of
a local moment with a protected Ising anisotropy [17]. We
therefore propose the quasiparticles in URu2Si2 to be
‘‘composite heavy fermions’’ formed from bound states
between the conduction electrons and local non-Kramers
doublets [13–15,27], having implications for both the
nature of the pairing [10–12] and the hidden order
phases [28,29].

Whereas the bulk magnetic susceptibility of heavy fer-
mion compounds typically combines several contributions
[15], the heavy fermion state itself is defined only in terms
of the spin susceptibility � / g�2eff of itinerant quasipar-

ticles. Since the composition of the spin degrees of free-
dom is a priori unknown, we treat these as pseudospin
� ¼ � 1

2 quasiparticles with an effective g factor g�eff .
Provided these quasiparticles are twofold degenerate and
retain their internal structure on pairing, we can use
Clogston’s expression [25]

�0Hp ¼ 2�ffiffiffi
2

p
�Bg

�
eff

(1)

for the Pauli-limited upper critical field, where 2� is the
superconducting gap ( � 0:58 meV in URu2Si2 [30]), �0

is the permeability of free space, and �B is the Bohr
magneton. Figure 1(a) shows the upper critical field of
URu2Si2 measured in samples with a large residual
resistivity ratio (RRR � 400 [26]).
In the case of unpaired quasiparticles in a magnetic field,

the same g�eff introduces a phase difference between mag-

netic quantum oscillations originating from spin split
Fermi surface sheets. Again, provided the quasiparticles
are twofold degenerate at zero field (and have effective
masses m� that are independent of spin), the quantum
oscillation amplitude is modified by a simple interference
term [14]

Rspin ¼ cos

�
�g�eff
2

�
m�

me

��
; (2)

where me is the mass of the free electron. An anisotropy in
g�eff causes the argument of this term to become magnetic

field orientation-dependent, causing the amplitude to
oscillate with angle � [a schematic representation of
measured data being shown in Fig. 1(b)], passing through
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a ‘‘spin zero’’ each time g�effðm�=me) is an odd integer. A

total of 16 spin zeros are observed on rotating the direction
of the field from H k ½100� to H k ½001� [24].

The surprising result here is that, by making rather
simple assumptions [implicit in Eqs. (1) and (2)], the
estimates for g�eff (shown in Fig. 2) made by using two

independent experimental methods are quantitatively con-
sistent over a broad angular range. The comparability of
these estimates both establishes the twofold degeneracy of
the quasiparticles and shows that the superconducting
critical field of URu2Si2 corresponds to that of a Pauli-
limited paired fermion condensate [25] for all orientations
of the magnetic field—the exception being a narrow range
of angles within �10� of the [100] axis in Fig. 2 (likely
associated with the dominant role of diamagnetic screening
currents once g�eff is strongly suppressed [23]).

The field orientation dependence of g�eff in Fig. 2 is

notably different from the usual isotropic case of g� � 2
for band electrons (dotted line), indicating the spin suscep-
tibility of the quasiparticles in URu2Si2 to differ along the
two distinct crystalline axes. Since the Zeeman splitting of

the quasiparticles is given by the projection M � Ĥ of the

spin magnetization M ¼ �
�2

B

2 ðg2a cos�; 0; g2c sin�ÞH along

H ¼ Hðcos�; 0; sin�Þ [where � is the electronic density

of states], settingM � Ĥ ¼ �
�Bg

�
eff

2 H defines an effective g

factor

g�eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2csin

2�þ g2acos
2�

q
(3)

that (in the case of a strong anisotropy) traces a figure ‘‘8’’
in polar coordinates. A fit to Eq. (3) in Fig. 2 (solid line)
yields gc ¼ 2:65� 0:05 and ga ¼ 0:0� 0:1, implying a
large anisotropy in the spin susceptibility �c

�a
¼ ðgcgaÞ2.

To obtain a lower bound for the anisotropy, we plot geff
(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [24] versus sin� (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for different
values of �c

�a
¼ ðgcgaÞ2 made by using Eq. (3). The observation

of a spin zero in Fig. 1 at angles as small as 3� implies a
lower bound �c

�a
* 1000. A smaller anisotropy would be

expected to lead to the observation of fewer spin zeros and
nonlinearity in the plot with an upturn in geff at small
values of sin� (see Ref. [31] and Fig. 4).
A large anisotropy in the magnetic susceptibility is the

behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal lat-
tice gives rise to an Ising anisotropy. Kondo coupling
provides one possible means by which such an anisotropy
can be transferred to itinerant electrons [15]. In the case of
an isolated magnetic impurity (i.e., an isolated magnetic
moment), Kondo singlets can be considered the result of an
antiferromagnetic coupling between the impurity and

FIG. 1 (color online). Data used for determining the effective g
factor. (a) shows the upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the projected onset of
resistivity at� 30 mK (similar to the method adopted by Ohkuni
et al. [24]). An example trace is shown in the inset. (b) shows a
schematic representation of the angle-dependent magnetic quan-
tum oscillations adapted from Fig. 18 of Ref. [24], with the
indices of the spin zeros indicated. The plot pertains to the
dominant � frequency [24], which can be followed uninterrupted
over the entire angular range. In order to show the oscillatory
behavior, the amplitude here is multiplied by �1 on crossing
each spin zero.

FIG. 2 (color online). A polar plot of the field orientation
dependence of g�eff . The values are estimated by using Eqs. (1)

and (2) represented by open and filled circles, respectively. Also
shown is a fit (solid line) of Eq. (3) to g�eff and the isotropic g

� �
2 (dotted line) expected for conventional band electrons. In
Fig. 1(a), we assume Hc2 � Hp. In extracting g�eff from the

index assignments of g�effðm�=meffÞ in Fig. 1(b), the weakly

angle-dependent m� is interpolated from the measured values
in Ref. [24].
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conduction electron states expanded as partial waves of the
same angular momenta [32]. A Fermi liquid composed of
composite heavy quasiparticles with heavy effective
masses and local angular momentum quantum numbers
is one of the anticipated outcomes in a lattice of moments
should such partial states overlap and satisfy Bloch’s theo-
rem at low temperatures [13,27]. The finding of a large
anisotropic impurity susceptibility ( �c

�a
� 140) in the dilute

limit of UxTh1�xRu2Si2 [33,34] supports the applicability
of the Kondo lattice model to URu2Si2, as does the obser-
vation of a Fano line shape in scanning tunneling micros-
copy experiments [35].

While magnetic moments in uranium heavy fermion
compounds are generally regarded to be close to the 5f2

electronic configuration [11,16–21] (i.e., with 2 f electrons
per site constituting the moment), 5f1, 5f2, and 5f3 are all
capable of producing magnetically anisotropic low lying
doublets in the tetragonal crystal environment of URu2Si2.
The 5f3 configuration can yield a vanishing a-axis suscep-
tibility for a precisely tuned combination of parameters
[33]. However, only the 5f2 configuration can yield
non-Kramers doublets in which a vanishing a-axis
susceptibility is protected by a large difference (�Jz ¼ 2)
between Jz angular momentum quantum numbers [17,29].
A protected anisotropy can also explain why �c

�a
	 100 in

both the dilute and lattice limits [33].
On equating the product of the pseudospin and effective

g factor with the product of the Jz quantum numbers and
Landé g factor gL ¼ 4

5 of a 5f2 non-Kramers �5 doublet,

we arrive at

� 1
2g

�
eff ¼ ðcos�jJz ¼ �3>þ sin�jJz ¼ 
1>ÞgL (4)

(neglecting any possible additional enhancement of g�eff by
many-body effects). The solid line in Fig. 2 is produced by
setting cos� ¼ 0:8, which is comparable to that ( cos� �
0:9) obtained from fits in the dilute limit [33].
Our study implies that neither a strictly localized or

itinerant picture applies to the state of the 5f electrons in
URu2Si2, which is likely to impact the origin of both the
superconducting pairing and hidden order phases
[28,29,36]. While band structure calculations often treat
the 5f electrons as itinerant [37], we find the quasiparticles
to strongly reflect the anisotropy of the local moments
determined by the crystal electric field environment. The
nature of the crystal fields in URu2Si2 has been difficult to
pin down by using other spectroscopic tools. One way to
understand the quasiparticles phenomenologically is
through the formation of composite heavy fermions, which
constitute bound states between the conduction electrons
and local moments [27]. The spin degrees of freedom of
the moments become incorporated into the Fermi surface
volume in such a picture, possibly giving rise to a Fermi
surface topologically similar to that found in itinerant
f-electron band structure calculations. The discovery of
such behavior in URu2Si2 suggests that the composite
heavy fermion picture has a broader range of applicability
than originally envisaged [14,15].
Finally, we discuss possibilities for the nature of the

superconducting pairing in URu2Si2. One popular notion
is that the composite heavy fermions pair in momentum
space in precisely the same way as ordinary spin- 12

FIG. 3 (color online). A plot of geff versus sin� (circles) in the
vicinity of the cusp in Fig. 2. Lines correspond to the expectation
for different values of �c

�a
¼ ðgcgaÞ2 in Eq. (3). The straight line fit

corresponds to �c

�a
! 1, while that with �c

�a
¼ 1000 is the lower

bound compatible with the data. Values 140, 70, and 5 corre-
spond, respectively, to quoted estimates from the dilute limit
[33], fits only toHp [23], and the measured susceptibility of pure

URu2Si2 [4] (which likely includes nonitinerant contributions to
the susceptibility).

FIG. 4 (color online). As a consistency check, we plot geff
versus sin� (circles) in the vicinity of the cusp in Fig. 2 where the
assignment of g�ðm�

me
Þ indices begins at 3 instead of 1 [31],

causing all points to be shifted upwards relative to Fig. 3. In
such a case, one no longer obtains consistent values for gc. From
reading off the last index [at which now g�ðm�

me
Þ ¼ 33], we obtain

gc � 2:9. On fitting Eq. (3) through the data points, we obtain
gc � 3:2. Neither value is consistent with g�eff ¼ 2:5� 0:1
estimated from Hc2 at � � 90� in Fig. 2 [31].
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electrons, with the local magnetic degrees of freedom
having little impact on the symmetry of pairing [8,9].
The finding of non-Kramers degrees of freedom and com-
posite heavy fermions, however, lends itself favorably to an
alternative scheme involving local magnetic degrees of
freedom [10–12]. Evidence supporting strong coupling in

URu2Si2 at Tc includes the large value of �
kBTc

¼ 4:5 that

exceeds the weak coupling value of 3.5 [30] (where Tc ¼
1:5 K is the superconducting transition temperature), the
pseudogap observed above Tc in point contact spectros-
copy experiments [30], and the existence of residual
magnetic entropy contributions to the susceptibility and
Sommerfeld coefficient at temperatures above Tc evi-
denced by the climb in both quantities with decreasing
temperature [38,39].

In summary, we find surprisingly excellent quantitative
agreement between the spin susceptibility of the paired
quasiparticles in URu2Si2 and that obtained from quantum
oscillations of the unpaired fermions over a broad angular
range, providing unambiguous evidence for a Pauli-limited
heavy fermion superconductor. The extreme anisotropy of
the spin susceptibility found by using two independent
measurement techniques also reveals URu2Si2 to be a
likely example of a system in which the magnetic proper-
ties of the itinerant carriers is determined entirely by local
non-Kramers doublet magnetic degrees of freedom, whose
extreme Ising anisotropy is protected within the tetragonal
lattice. A Fermi liquid composed of unusual heavy com-
posite quasiparticles is therefore suggested, with the
non-Kramers doublets being conducive to a local
superconducting pairing mechanism.

M.M.A. and N.H. acknowledge the provision of the
U.S. Department of Energy (DOE), Office of Basic Energy
Sciences (BES) funding for the ‘‘Science of 100 Tesla.’’
M.M.A. further acknowledges a Seaborg fellowship. L. B.
is supported by DOE-BES through Grant No. DE-
SC0002613. Work by P.H. T., F. R., and E.D. B. is
supported by the U.S. DOE, Office of BES, MSE
Division and by the LANL LDRD program. Experiments
were performed at the NHMFL, which is supported by the
U.S. DOE, the National Science Foundation, and the State
of Florida. N.H. thanks Premala Chandra and Piers
Coleman for useful suggestions.

[1] A. J. Leggett, Rev. Mod. Phys. 71, S318 (1999).
[2] M.W. Zwierlein et al., Science 311, 492 (2006).
[3] M. Tinkham, Introduction to Superconductivity (McGraw-

Hill, New York, 1996).
[4] T. T.M. Palstra et al., Phys. Rev. Lett. 55, 2727

(1985).
[5] C. Geibel et al., Z. Phys. B 84, 1 (1991).
[6] N. D. Mathur et al., Nature (London) 394, 39

(1998).
[7] S. S. Saxena et al. Nature (London) 406, 587 (2000).

[8] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239
(1991).

[9] P. Monthoux, D. Pines, and G.G. Lonzarich, Nature
(London) 450, 1177 (2007).

[10] P. Coleman et al., Phys. Rev. B 60, 3608 (1999).
[11] D. L. Cox and A. Zawadowski, Adv. Phys. 47, 599

(1998).
[12] R. Flint, M. Dzero, and P. Coleman, Nature Phys. 4, 643

(2008).
[13] D.M. Newns and N. Read, Adv. Phys. 36, 799

(1987).
[14] J.W. Rasul, Phys. Rev. B 39, 663 (1989).
[15] A. C. Hewson, The Kondo Problem to Heavy Fermions

(Cambridge University Press, Cambridge, England,
1993).

[16] P. Santini and G. Amoretti, Phys. Rev. Lett. 73, 1027
(1994).

[17] F. J. Ohkawa and H. Shimizu, J. Phys. Condens. Matter 11,
L519 (1999).

[18] A. Grauel et al., Phys. Rev. B 46, 5818 (1992).
[19] G. Zwicknagl, A.N. Yaresko, and P. Fulde, Phys. Rev. B

65, 081103 (2002).
[20] B. R. Trees, A. J. Fedro, and M.R. Norman, Phys. Rev. B

51, 6167 (1995).
[21] H. Ikeda and K. Miyake, J. Phys. Soc. Jpn. 66, 3714

(1997).
[22] W.K. Kwok et al., Phys. Rev. B 41, 11 649

(1990).
[23] J. P. Brison et al., Physica (Amsterdam) 250C, 128

(1995).
[24] H. Ohkuni et al., Philos. Mag. B 79, 1045 (1999).
[25] A.M. Clogston, Phys. Rev. Lett. 9, 266 (1962).
[26] M.M. Altarawneh et al., Phys. Rev. Lett. 106, 146403

(2011).
[27] P. Coleman et al., J. Phys. Condens. Matter 13, R723

(2001).
[28] J. A. Mydosh and P.M. Oppeneer, Rev. Mod. Phys. (to be

published).
[29] R. Flint, P. Chandra, and P. Coleman (unpublished).
[30] F. Morales and R. Escudero, J. Low Temp. Phys. 154, 68

(2008).
[31] A consistency check is required to ensure that the indices

of g�ðm�
me
Þ in Figs. 1 and 3 begin at 1 (at � � 3�) rather than

a higher odd integer. In Fig. 4, we plot the same data
points as in Fig. 3 but with the indices reassigned begin-
ning at 3 instead of 1. In this case, no single line given by
Eq. (3) can go through all the points. The curve that goes
through most points (corresponding to �c=�1 � 70) is
incompatible with the observation of a spin zero at � �
3�. Furthermore, the assignment of g�ðm�

me
Þ ¼ 3 for the first

spin zero requires that g�eff � 2:9 at the last spin zero
(or that gc � 3:2 on fitting), which is too large an effective
g factor to account for the observed critical fields in
Fig. 1(a). Consistency between data sets (as shown in
Fig. 2) and with an anisotropic spin susceptibility is
therefore achieved only when the spin zero indices begin
at g�ðm�

me
Þ ¼ 1, as shown in Fig. 3.

[32] B. Coqblin and J. R. Schrieffer, Phys. Rev. 185, 847
(1969).

[33] H. Amitsuka and T. Sakakibara, J. Phys. Soc. Jpn. 63, 736
(1994).

PRL 108, 066407 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

10 FEBRUARY 2012

066407-4

http://dx.doi.org/10.1103/RevModPhys.71.S318
http://dx.doi.org/10.1126/science.1122318
http://dx.doi.org/10.1103/PhysRevLett.55.2727
http://dx.doi.org/10.1103/PhysRevLett.55.2727
http://dx.doi.org/10.1007/BF01453750
http://dx.doi.org/10.1038/27838
http://dx.doi.org/10.1038/27838
http://dx.doi.org/10.1038/35020500
http://dx.doi.org/10.1103/RevModPhys.63.239
http://dx.doi.org/10.1103/RevModPhys.63.239
http://dx.doi.org/10.1038/nature06480
http://dx.doi.org/10.1038/nature06480
http://dx.doi.org/10.1103/PhysRevB.60.3608
http://dx.doi.org/10.1080/000187398243500
http://dx.doi.org/10.1080/000187398243500
http://dx.doi.org/10.1038/nphys1024
http://dx.doi.org/10.1038/nphys1024
http://dx.doi.org/10.1080/00018738700101082
http://dx.doi.org/10.1080/00018738700101082
http://dx.doi.org/10.1103/PhysRevB.39.663
http://dx.doi.org/10.1103/PhysRevLett.73.1027
http://dx.doi.org/10.1103/PhysRevLett.73.1027
http://dx.doi.org/10.1088/0953-8984/11/46/101
http://dx.doi.org/10.1088/0953-8984/11/46/101
http://dx.doi.org/10.1103/PhysRevB.46.5818
http://dx.doi.org/10.1103/PhysRevB.65.081103
http://dx.doi.org/10.1103/PhysRevB.65.081103
http://dx.doi.org/10.1103/PhysRevB.51.6167
http://dx.doi.org/10.1103/PhysRevB.51.6167
http://dx.doi.org/10.1143/JPSJ.66.3714
http://dx.doi.org/10.1143/JPSJ.66.3714
http://dx.doi.org/10.1103/PhysRevB.41.11649
http://dx.doi.org/10.1103/PhysRevB.41.11649
http://dx.doi.org/10.1016/0921-4534(95)00358-4
http://dx.doi.org/10.1016/0921-4534(95)00358-4
http://dx.doi.org/10.1080/014186399256916
http://dx.doi.org/10.1103/PhysRevLett.9.266
http://dx.doi.org/10.1103/PhysRevLett.106.146403
http://dx.doi.org/10.1103/PhysRevLett.106.146403
http://dx.doi.org/10.1088/0953-8984/13/35/202
http://dx.doi.org/10.1088/0953-8984/13/35/202
http://dx.doi.org/10.1007/s10909-008-9851-1
http://dx.doi.org/10.1007/s10909-008-9851-1
http://dx.doi.org/10.1103/PhysRev.185.847
http://dx.doi.org/10.1103/PhysRev.185.847
http://dx.doi.org/10.1143/JPSJ.63.736
http://dx.doi.org/10.1143/JPSJ.63.736


[34] It is necessary to subtract off the background ThRu2Si2
contribution to the susceptibility to obtain the extremely
anisotropic component originating solely from U
substitution.

[35] A. R. Schmidt et al., Nature (London) 465, 570 (2010).
[36] In the case of ‘‘hastatic order,’’ the hybridization between

the conduction electrons and non-Kramers doublets is a

two-component spinor that plays the role of an order
parameter [29].

[37] P.M. Oppeneer et al., Phys. Rev. B 82, 205103
(2010).

[38] C. Pfleiderer, J. A. Mydosh, and M. Vojta, Phys. Rev. B 74,
104412 (2006).

[39] W. Schlabitz et al., Z. Phys. B 62, 171 (1986).

PRL 108, 066407 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

10 FEBRUARY 2012

066407-5

http://dx.doi.org/10.1038/nature09073
http://dx.doi.org/10.1103/PhysRevB.82.205103
http://dx.doi.org/10.1103/PhysRevB.82.205103
http://dx.doi.org/10.1103/PhysRevB.74.104412
http://dx.doi.org/10.1103/PhysRevB.74.104412
http://dx.doi.org/10.1007/BF01323427

