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The experimentally observed metal-to-insulator transition in hydrogenated graphene is numerically

confirmed for actual sized graphene samples and realistic impurity concentrations. The eigenstates of our

tight-binding model with substitutional disorder corroborate the formation of electron-hole puddles with

characteristic length scales comparable to the ones found in experiments. The puddles cause charge

inhomogeneities and tend to suppress Anderson localization. Even though, monitoring the charge carrier

quantum dynamics and performing a finite-size scaling of the local density of states distribution, we find

strong evidence for the existence of localized states in graphene nanoribbons with short-range but also

correlated long-range disorder.
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The experimental observation of a disorder-induced
metal-to-insulator transition in graphene upon hydrogena-
tion [1] has triggered a vivid debate on the nature of this
transition. For high concentrations of hydrogen several
mechanisms of gap opening have been discussed, such as
full sp2 to sp3 transition, localization of sp3 areas, or
erasing of midgap states [2,3]. Graphene, on the other
hand, is a truly two-dimensional system, and the one-
parameter scaling theory predicts that at zero temperature
any finite amount of disorder should lead to Anderson
localization (AL) [4]. Otherwise, the existence of a scaling
function might be questionable since the Fermi wavelength
diverges near the charge neutrality point and there is no
spatial scale on which the conductivity is much larger than
e2=h [5]. So far it seems that AL has not been seen in
disordered graphene down to temperatures of liquid helium
[6]. This surprising result has been attributed to strong
charge carrier density fluctuations that break up the sample
into electron-hole puddles [7]. Within these puddles the
local chemical potential deviates enough from the charge
neutrality point to allow for electron or hole conductivity.
Mesoscopic transport is then determined by activated
(variable-range) hopping or leakage between the puddles
[8]. If the formation of electron-hole puddles is suppressed,
however, AL might be observed. This has been reported by
quite recent experiments in double-layer graphene hetero-
structures [9].

Previous theoretical work on disordered graphene
strongly emphasizes the difference between short- and
long-range scatterers. While the former applies to the
case of hydrogenation, the latter rather describes the effect
of charged impurities in the substrate [10]. Within the
Dirac approximation, only short-range impurities cause
intervalley scattering, and thus may lead to AL [11]. The
presence of long-range impurities alone gives rise to intra-
valley scattering which is not sufficient to localize the
charge carriers [12]. Another factor is the edge geometry

of the graphene nanoribbons (GNRs) that determines the
universality class of disordered samples as long as the
phase coherence length exceeds the system size [13].
Going beyond the Dirac approximation and describing
graphene by a tight-binding model, it is natural to ask
whether the scattering range is still decisive. Deviations
from the idealized linear dispersion, a finite lattice spacing,
and the trigonal lattice symmetry, which breaks the rota-
tional symmetry of the Dirac cones, call for a careful
numerical analysis of the localization properties within
the tight-binding description [14].
In this work, we prove by unbiased numerics that ex-

perimentally relevant concentrations of hydrogen x � 1
may induce a metal-to-insulator transition in actual-size
graphene samples. We show that the single-particle wave
functions of our disorder model are also localized for
correlated long-range disorder. Even for potential fluctua-
tions on an atomistic scale there is strong evidence for
electron-hole puddle formation on an intrinsic scale of
some 10 nm, in agreement with recent experimental ob-
servations. [15]. In contrast to previous studies on tem-
perature dependent transport in disordered graphene within
the semiclassical Boltzmann approach [16], we restrict
ourselves in the following to strictly zero temperature
and adopt a purely quantum point of view.

We consider a tight-binding Hamiltonian H ¼
�t

P
hijiðcyi cj þ H:c:Þ þP

iVic
y
i ci, on the honeycomb

lattice with N sites, where the operators cyi (ci) create
(annihilate) an electron in a Wannier state centered at
site i, and t denotes the nearest-neighbor transfer integral.
The landscape of onsite potentials fVig results from the
superposition of contributions of Nimp ¼ xN randomly

distributed Gaussian impurities at positions rm [17]: Vi ¼PNimp

m¼1 �m exp½�jri � rmj2=ð2�2Þ�. By choice of � the

range of the individual impurity potentials can be contin-
uously tuned from short ranged to long ranged. For � ! 0
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and x ¼ 1 we recover the Anderson model on a GNR [18].
Assuming a fixed �m ¼ � for all impurities, the limit
� ! 0 results in the binary alloy model in which only
distinct sites acquire a finite onsite potential. Vacancies
correspond to sites with� ! 1, leading to a quantum site-
percolation scenario [19]. The presence of adsorbed hydro-
gen atoms alters the hybridization of carbon atoms from
sp2 to sp3, partially removing the corresponding pz orbital
from the � band. We model the yet finite probability of
finding electrons at the adsorbant site by a finite value of
the disorder strength � (see Fig. 1).

Experimental results by Bostwick et al. [1] suggest a
metal-to-insulator transition in graphene for a hydrogen
coverage as low as 0.3%. In Fig. 2 we contrast the spatial
distribution of the local density of states (LDOS) �iðEÞ ¼P

njhnjiij2�ðE� EnÞ at the Dirac point energy for a hydro-
gen coverage slightly below and above this threshold. For
zigzag boundaries the well known edge states persist even
in the presence of weak disorder. Impurities on the sub-
lattice with high LDOS values near the GNR edges dras-
tically reduce these values. On the other sublattice they do
not have any effect. In the bulk of the ribbon, the LDOS is
slightly enhanced as compared to the ordered case. Positive
interference traps the wave function on sites in between the
impurities. For periodic boundary conditions (PBC) the
spatial LDOS distribution is clearly distinct for both
impurity concentrations: We observe only slight local

perturbations of the perfectly extended state for low impu-
rity concentrations but a clearly localized state at 1%
hydrogen coverage. Measurements on a sample of this
size therefore yield metallic (insulating) behavior for cov-
erages 0.1% (1%). The observed metallic character seems
to be merely a consequence of a finite localization length �
that exceeds the system size. Note that the calculated state
characteristics and experimental results agree qualitatively
for PBC only. This underlines that the observed localiza-
tion properties are intrinsic to short-range disordered bulk
graphene. Edge effects arise on top, but are to a certain
extent irrelevant in experiments, especially if mobilities are
measured using a multiterminal Hall geometry [20].
In order to assert that AL takes place in infinite GNRs,

we analyze the distribution of the normalized LDOS,
f½�i=�me�, in Fig. 3. We restrict ourselves to three charac-
teristic energies which are shown in the inset together with
the averaged density of states �me ¼ h�ii. The behavior of
the LDOS distribution upon finite-size scaling (lower
panel) is a powerful criterion to detect AL for different
kinds of disordered systems [21], even in the presence of
interactions [22]. Extended states are characterized by an
f½�i=�me� being independent of the system size. Otherwise
sensitivity of the distribution to the system size indicates
localization, which we indeed observe for binary alloy
disordered GNRs for all energies and both impurity
concentrations.
For a given state, the shape of the LDOS distribution and

the extent of its shifting depend on �; the more pronounced
the shift and the more asymmetric f½�i=�me�, the shorter is
�. Larger impurity concentrations enhance localization, as
can be seen from the asymmetric shape of f½�i=�me� for
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FIG. 1 (color online). Cartoon of the substitutional disorder
model describing hydrogenated graphene.
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FIG. 2 (color online). Spatial distribution of the normalized
LDOS �i=�me at E ¼ 0 for the binary alloy model with potential
difference � ¼ 6:0t and impurity concentration x ¼ 0:1% (left
column) and 1% (right column). The disorder configurations
shown in the top panel were used for both BC. Data obtained by
exact diagonalization (ED), GNR sample size ð37� 12Þ nm2,
corresponding to 300� 60 atoms.
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FIG. 3 (color online). Upper panel: Distribution of the LDOS
at experimentally relevant energies for the binary alloy model
with different impurity concentrations and PBC. The sample
width W ¼ 109 nm. Normalization of the distribution to �me

directly relates its position to the height of the maximum and its
width. Inset: Magnification of the averaged DOS with indica-
tions of the energies for which the LDOS distributions are
shown. Lower panel: Finite-size scaling of the LDOS distribu-
tion. Data obtained by the kernel polynomial method with
resolution adapted to the level spacing, Nk ¼ 140 (for details
see [21,27]).
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x ¼ 0:01. The persisting size dependence for x ¼ 0:001
proves localization also for such a weak randomness. Here
the high sensibility of the LDOS distribution to the ratio of
� and system size is of vital importance. It allows us to
detect localization also in the case of weak disorder for
which � distinctly exceeds the system size and conse-
quently f½�i=�me� is concentrated around unity.

In Fig. 4 we contrast the quantum dynamics of a particle
injected into zigzag GNRs with binary or Gaussian corre-
lated disorder and impurity concentrations of 0.1% and
1%. As initial state jc 0i we prepare an exact E ¼ 0
eigenstate of the ordered infinite graphene lattice in the
lead left to the sample (see Fig. 1). After bringing the lead
in contact with the sample, we let the system evolve in time
by solving the time-dependent Schrödinger equation by a
Chebyshev expansion technique [19,23]. Because of the
coupling with the disordered GNR, jc 0i is not an eigen-
state of the overall system but comprises admixtures of

other states, mainly from the vicinity of E ¼ 0. The snap-
shot at � ¼ 103�0, where �0 ¼ @=t, confirms the intuition
that spreading is faster the lower the impurity concentra-
tion is (see Fig. 4). At � ¼ 106�0 all states have reached
quasistationarity, and we can extract their characteristic
features. For x ¼ 0:1% the state spans the whole sample.
The magnification reveals its puddlelike structure with
density fluctuations of 2 orders of magnitude on length
scales of 5–10 nm. At an impurity concentration of x ¼ 1%
the particle density is reduced about 2 orders of magnitude
between the left and right edge of the GNR, providing a
direct visualization of AL. Note that the local structure of
jc i remains puddlelike, but the spatial extent of the pud-
dles is substantially reduced below 1 nm. From the simi-
larity of both local structures one may argue that for
larger systems also states for x ¼ 0:1% will be localized.
Note that correlated disorder results in a markedly
smoother potential landscape. In addition, the electron-
hole puddles are superimposed by a coarse-grained fila-
mentary structure.
Integrating the local particle density over the transverse

ribbon direction allows for a more quantitative analysis of
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FIG. 4 (color online). Time evolution of the local particle density on disordered zigzag GNRs after, at � ¼ 0, finite (ordered) leads
were attached to the left and right of the GNR. jc ðri; tÞj2 is normalized to the actual mean particle density on the GNR. The color scale
is identical to Fig. 2. Sample dimensions are ð221� 109Þ nm2, corresponding to 1800� 512 lattice sites. Left and middle column:
Binary alloy model with � ¼ 6t. Right column: Gaussian correlated disorder model with � ¼ 3a, where a is the intercarbon distance.
Here the potential is normalized to maxðViÞ ¼ 6t. The bottom-line magnifications show jc ðri; tÞj2 in the quasistationary regime
together with the corresponding potential landscape.
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the localization properties (see Fig. 5). For a fixed configu-
ration of impurity positions we vary the relevant control
parameters and extract � from fitting the quasistationary
density to an exponential decay. Removing part of the
impurities results in a larger � [Fig. 5(a)]. For the consid-
ered ribbon width the difference between zigzag and PBC
is marginal, while armchair edges drastically reduce the
transmission [Fig. 5(b)]. This reflects the mismatch of
preferred transport direction and ribbon axis. Varying the
incident particle energy [Fig. 5(c)] we observe an enhanced
transmission for E ¼ �0:2t, which might be attributed to
resonant (localized) states. Note that at the position of the
chemical potential of graphene on a SiC substrate, E ¼
0:2t, � is even shorter than at the Dirac point E ¼ 0. For
correlated long-range disorder [Fig. 5(d)], � increases with
�, yielding extended states if � � a. For � ¼ a, 3a the
states are still clearly localized. This disagrees with results
in the literature obtained within the Dirac approximation
[12], where the valley quantum number is conserved and
localization is suppressed in the absence of intervalley
scattering [11]. We attribute this difference to the lattice
discreteness and the breaking of the rotational symmetry of
the Dirac cones by the trigonal symmetry of the honey-
comb lattice. Moreover, even for a narrow banded initial
state the dynamics is influenced by states from the whole
energy spectrum where the graphene dispersion signifi-
cantly deviates from the linear approximation. If all these
aspects were taken into account, long-ranged disorder may
cause localization within a tight-binding description in
accordance with one-parameter scaling [24]. Whether AL
really occurs for correlated disorder can be proven by
performing a finite-size scaling of the LDOS distribution.
In doing so we find evidence for localization for � ¼ 3a
from the shifting of the LDOS distribution (see left panel of
Fig. 6). A remarkable feature of f½�i=�me� is the salient tail
that develops for small values of �i on increasing �. In the
right panel of Fig. 6 this results in a kinked cumulated
distribution function (CDF) instead of the approximate
straight CDF for uncorrelated disorder [25].

So far we considered strong disorder (� � 1) and weak
randomness (x � 1), for which it is tempting to relate
average puddle size and distance between the impurities.
Interestingly, electron-hole puddles also arise for weak
disorder strength and strong randomness, corresponding
to a disorder landscape varying on an atomistic scale
without any correlations. Such a modeling might be re-
garded as an attempt to capture the effect of the buffer layer
forming between epitaxially grown graphene and its SiC

substrate [26]. In this setup we refrain from considering a
correlated potential landscape in order not to impose any a
priori correlations in the LDOS. For weak disorder
strength, � ¼ 0:5t, the LDOS at E ¼ 0 nevertheless be-
comes puddlelike with a characteristic scale of 2–5 nm (see
middle panel of Fig. 7). Note that the choice of BC has no
qualitative impact on the LDOS in this limit of the binary
alloy model. Obviously, any subtle differences in the state
characteristics induced by BC are masked by the random-
ness of the potential landscape. Increasing the potential
difference to� ¼ 2t, � drops below the system size and we
observe clearly localized states.
To conclude, hydrogenated graphene behaves at zero

temperature as a ‘‘normal’’ two-dimensional disordered
system concerning AL, provided the extensions of ultra-
high-quality samples become very large. If the localization
length noticeably exceeds the system size, the sample
nevertheless shows metallic behavior. We find that also
certain long-range correlations in the disorder landscape
yield localized single-particle wave functions. Most nota-
bly, we show that disorder-induced electron-hole puddles
may arise for both disorder types. The intrinsic scale of the
puddlelike structures in the eigenstates is not simply set by
the distance between impurities, but results from subtle
quantum interference effects. Even for atomic scale fluc-
tuations of the disorder potential they might exceed 5 nm,
which is in the range of experimentally measured values.
The presence of electron-hole puddles, leading to intra-
and interpuddle transport, drives the system away from the
metal-to-insulator transition, thereby masking AL [9]. This
resolves the puzzle why AL is so hard to detect in disor-
dered graphene and GNRs.
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