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Isotopes fractionate in thermal gradients, but there is little quantitative understanding of this effect in

complex fluids. Here we present results of experiments and molecular dynamics simulations on silicate

melts. We show that isotope fractionation arises from classical mechanical effects, and that a scaling

relation based on Chapman-Enskog theory predicts the behavior seen in complex fluids without arbitrary

fitting parameters. The scaling analysis reveals that network forming elements (Si and O) fractionate

significantly less than network modifiers (e.g., Mg, Ca, Fe, Sr, Hf, and U).
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Recent experiments on silicate melts have shown that
isotopes fractionate significantly along a temperature gra-
dient, such that heavy isotopes accumulate in the cold end
and light isotopes accumulate in the hot end [1–4]. The
magnitude of this fractionation can be quite large; for ex-
ample, in molten basalt an isotopic enhancement of several
tenths of a percent is observed for 26Mg with as little as
50 �C difference in temperature [2]. Given the precisionwith
which isotopic ratios of many elements can now be mea-
sured, it may be possible to detect thermally driven isotope
fractionation in magmatic systems [5]. Indeed, the observa-
tion of increasingly heavier isotope ratios with magmatic
differentiationmay provide evidence for such an effect [6,7].
However, in order to understand the origin of observed
isotopic variations in magmatic systems, and use them as
tools to infer the magmatic history, it is necessary to under-
stand the physical basis for thermally driven isotope fractio-
nation, and the controls on its magnitude and direction.

The physical origins of this isotope fractionation are not
well understood. A phenomenological model for this frac-
tionation based on a quantum zero-point effect has recently
been put forth [8], but it is not clear that this model can
reproduce experimental results with physically reasonable
parameters [9]. We show here that the fractionation arises
from classical mechanical effects, and that a simple scaling
relation can quantitatively predict behavior in silicate melt
systems.

The steady-state variation in the ratio of a heavy (mass
mh) and light (mass ml) isotope along a temperature gra-

dient in silicate melts can be characterized by �̂,

�̂ðxÞ ¼ ChðxÞ=ClðxÞ
Chðx0Þ=Clðx0Þ � 1 (1)

where ChðxÞ and ClðxÞ are the concentrations of the heavy
and light isotope at position x, and x0 is a reference

position (our definition of �̂ is not on a per mil basis, as
is common). The strength of the isotope fractionation at

steady state is often expressed in terms of the parameter �̂:

�̂ ¼ ��̂ðmh �mlÞðT � T0Þ; (2)

where T0 is the temperature for which �̂ ¼ 0. While �̂
may vary with temperature [10], this dependence is found
to be small for silicate melts [11]. It has been recognized

that the values of �̂ may depend on mass and the atomic
interactions, and an empirical scaling was proposed in

which �̂ is correlated with the isotope masses, ionic
charge, and ionic radius [4].
Here we propose a nonempirical scaling that is based on

Chapman-Enskog theory [12–15]. This is a rigorous theory
with the only assumptions being that the interactions be-
tween atoms are binary elastic collisions described by
classical mechanics, and that the interatomic forces are
spherically symmetric. In Chapman-Enskog theory, the
relation for steady-state isotope fractionation along a tem-
perature gradient to leading order is [12–15]

�̂ ¼ ��0

�
mh �ml

mh þml

��
T � T0

T0

�
(3)

where the value of �0 is predicted to be of order 1. For
example, for hard-sphere systems, �0 ¼ 105=118 in the
dilute gas limit [14] and it increases with increasing density
to a value of �5 for a liquid near its maximum density (at
the glass transition) [15].
We hypothesize that this scaling relation [Eq. (3)] de-

scribes thermal isotope fractionation for complex fluids
such as silicate melts. To stringently test the scaling be-
havior of isotope fractionation, new experiments and mo-
lecular dynamics (MD) simulations were carried out. The
experiments generated results for isotope fractionation of
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Sr, Hf, and U in silicate melts (see below for details)—the
new data provide a strong test for theory as it expands the
range of isotope fractionation data to elements covering
most of the periodic table. Our MD simulations on liquid
MgSiO3 are the first to address isotope fractionation by
thermal diffusion in a silicate melt. The MD simulations
provide a strong test for the scaling behavior as the simu-
lations must be carried out under ‘‘extreme’’ conditions (in
comparison to laboratory experiments) in order to obtain
adequate signal-to-noise for the local isotope concentra-
tions with the relatively small number of atoms and short
times that are accessible computationally. In particular, the
simulations (a) use heavy isotopes that have masses that
are 400% of the normal atom, in contrast to natural differ-
ences of isotopic masses that are typically 5%–10% or less;
(b) use temperature gradients of�1011 K=m, in contrast to
gradients of�104 K=m in experiments; and (c) are carried
out at mean temperature T0 ¼ 4000 K, in contrast to ex-
periments carried out at T0 � 1500–2000 K (see below for
details).

The new experimental data presented here come from
thermal migration experiments performed in the University
of Illinois, Urbana-Champaign experimental petrology
laboratory. The Sr, Hf, and U data represent analyses of
solutions derived from dissolving spatially located sub-
samples from the hot melt-rich end of a thermal migration
experiment involving a basaltic starting material. The ex-
periment was performed at 0.5 GPa by placing a graphite
capsule containing nominally anhydrous BCR-2 (USGS
basalt standard powder) doped with several trace elements
at 1000 to 2000 ppm levels into the temperature gradient of
a 3

4
” piston cylinder for 34 days. Using the spinel diffusion

profile method to determine the temperatures [16], we
estimate temperature over the entire capsule ranged from
1260 �C to 800 �C. Like previous thermal migration ex-
periments, the basaltic starting material evolves to an all
melt region at the hot end, a middle region of crystals
(orthopyroxene, garnet, clinopyroxene, and ilmenite) plus
melt and fine grained crystalline material at the cold end
which has not changed greatly in composition relative to
the starting material. Probably because the lower half of
this experiment has undergone little chemical transport (it
appears to be entirely crystalline), no isotope fractionation
relative to the starting material is observed such that the
calculated fractionations used here only apply to subsam-
ples from the upper half of the experiment (analogous to
the Mg and Fe isotopic variations previously observed
[17]). The experimental charge was cut into 7 equal
�1 mm thick sections and each section dissolved in
HF-HNO3 to make a master solution for that section.
Aliquots were removed for Sr, U, and Hf isotope analysis.
Sr was purified using standard Sr spec methods with
SRM987 also processed simultaneously. The purified Sr
solution was run in dry plasma mode using a DSN-100
desolvating nebulizer coupled to a Nu Pasma HR MC-

ICPMS (at UIUC) with the chemically processed
SRM987 used as a bracketing standard between each
solution analysis. 84Sr, 86Sr, 87Sr, and 88Sr were collected
and offsets for 88Sr=86Sr between standard and solutions
were determined. Estimated precision is 0.015% (2s),
much smaller than the total offset observed which was
0.237%. Because of interference issues on 84Sr from Kr,
we were unable to obtain satisfactory analyses of
84Sr=88Sr. Hf was purified using established procedures
in the chemistry laboratory at the University of Iowa. An
Alfa ICPMS Hf solution was used as a bracketing standard
for dry plasma analyses on the Nu Plasma HR (UIUC).
Masses 177, 178, 179, 180 were analyzed and mass de-
pendence of the fractionation assessed. This is much larger
than the estimated precision of <0:005%. U was analyzed
by a double spike technique after purification by standard
anion exchange methods. The total offset in 238U=235U is
0.075%, significantly larger than the estimated precision of

FIG. 1 (color online). Comparison of MD results with experi-
mental results. (a) Si, (b) O, (c) Mg. Filled black symbols are
MD results. Open symbols are experimental results: (red) Huang
et al. [4], (blue) Richter et al. [2,3], (green) Kyser et al. [1].
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0.01% (2s). More details of this experiment and analyses
are provided elsewhere [18].

Molecular dynamics (MD) simulations use the classical
equations of motion to follow the trajectories of atoms as
they move under the influence of interatomic forces. Our
simulations are carried out for liquid MgSiO3, with inter-
atomic forces parameterized by potentials that have pre-
viously been shown to accurately model real liquids [19].
Our simulations are carried out for a system composed
of 2160 atoms in a cubic simulation box with length
L ¼ 3:2 nm (corresponding to the density 21 830
MgSiO3 moles=m3); periodic boundary conditions are
used to remove edge effects. The equations of motion are
integrated numerically with a time step of 1 fs; simulations
are run for durations of 68 ns (this long simulation time is
needed to obtain sufficient signal-to-noise to resolve the
small differences in the local concentrations for the isotope
pairs). To address isotope effects, 23% each of Si and Mg
atoms and 8% of O atoms are replaced by ‘‘heavier iso-
topes’’ with masses 4 times as large. To generate a tem-
perature gradient, the nonequilibrium MD method is used
whereby a ‘‘cold slice’’ and ‘‘hot slice’’ of the simulation
box are defined, of thickness d ¼ 0:13 nm and oriented
perpendicular to the x axis at x=L ¼ 0:25 and x=L ¼ 0:75,
respectively; at each time step an energy �" ¼ 0:2kBT is
transferred from the atoms in the cold slice to the atoms in
the hot slice, by rescaling the velocities of these atoms [20].
The simulations were carried out with the GROMACS soft-
ware package [21], which we modified to include the
thermal gradient code.

First, we address the accuracy of our MD simulations

and relevance to experiment. Our MD results for �̂ are
compared with experiments in Fig. 1, using the scaling
relation of Eq. (3)—the agreement is very good, consider-
ing that the MD results follow from fundamental physics
with no fitting of any kind to the experimental results. This
agreement suggests that the properly scaled results are not
strongly dependent on the values of the atomic mass dif-
ferences and temperature gradients. The MD and experi-
mental results for �0 are compared in Table I. The MD
results correctly reproduce the relative magnitudes of the
steady-state isotope fractionation, with Si< O<Mg. The
MD result for O is within experimental error, and the MD
result for Si is within 30% of the experimental value. The
MD result for Mg differs by a factor of 2.5 from the
experimental result (perhaps this larger difference is due
to the high temperature of the simulations, which would act
to make all elements behave more similarly because the
influence of energetic interactions scales as 1=kT).

The scaling of Eq. (3) is tested in Fig. 2 using all
available data for silicate melts—these results include
experimental fractionations of Si, O, Fe, Mg, Ca in supra-
liquidus basaltic to andesitic liquids and subliquidus ande-
site from Refs. [1–4], our new data for Sr, Hf, and U in
subliquidus basalt, and our MD results for Si, O, and Mg in

MgSiO3. This wide range of data largely collapses when
the scaling of Eq. (3) is applied. It is noteworthy that the
same scaled fractionation occurs whether the system is at
super- or subliquidus conditions and regardless of the
direction of chemical fluxes. Table I gives the values for

�0 and �̂ (by comparing Eqs. (2) and (3), �0 ¼ �̂ðmh þ
mlÞT0). The range of �0 values in silicate melts, 0:5<
�0 < 3:5, is very similar to that from Chapman-Enskog
theory for hard-sphere systems, i.e., 1<�0 < 5 [15].
Furthermore, there is a distinct difference in the values of
�0 for network formers (Si and O) and network modifiers
(Mg, Fe, Ca, Sr, U, Hf), with smaller values for the net-
work formers and little variation within each of these two
groups; this difference is not evident in terms of the values

of �̂.
Since both Chapman-Enskog theory (even when eval-

uated for hard-sphere systems) and MD simulations give
quantitative agreement with experiment with no adjustable
parameters, it can be concluded that the origins of isotope
fractionation lie in the classical mechanical collisions

TABLE I. Summary of experimental isotope fractionation re-
sults. For comparison, the MD results are �0ðSiÞ ¼ 0:77,
�0ðOÞ ¼ 0:88, �0ðMgÞ ¼ 1:3.

Element �0 (dimensionless) �̂� 105 (C�1 amu�1)

18O (K,D)i 0.53 .95
30Si (R,B)b 0.61 .60
18O (K,B)h 0.70 1.25
18O (R,B)b 0.90 1.50
18O (K,A)g 0.93 1.65
238U (P)a 1.60 0.23
180Hf (P)a 1.78 0.34
57Fe (H,F)e 2.09 1.04
57Fe (R,B)b 2.13 1.10
57Fe (H,A)c 2.14 1.13
88Sr (P)a 2.25 0.88
44Ca (H,B)d 2.30 1.52
44Ca (R,B)b 2.37 1.60
26Mg (H,A)c 2.65 3.09
57Fe (H,P)f 2.81 1.41
57Fe (H,B)d 2.82 1.42
26Mg (R,B)b 3.17 3.60
26Mg (H,B)d 3.49 3.87

a(P) Present results; T0 ¼ 1470 K for Sr, Hf, U; T0 ¼ 1270 K
for H.
b(R,B) Basalt composition from Richter et al. [2,3] �̂ values
quoted in text; T0 ¼ 1760 K obtained as average temperature at
which � passes through zero in Figures 5, 7 of Ref. [3].
c(H,A) Andesite composition from Huang et al. [4].
d(H,B) Basalt composition from Huang et al. [4].
e(H,F) Fayalite-Leucite-Quartz composition from Huang et al.
[4].
f(H,P) Pantellerite composition from Huang et al. [4].
g(K,A) Andesite composition from Kyser et al. [1]; T0 ¼ 1660.
h(K,B) Basalt composition from Kyser et al. [1]; T0 ¼ 1640.
i(K,D) Dacite composition from Kyser et al. [1]; T0 ¼ 1630.
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between pairs of particles (and are not solely a product of
quantum effects, as has been suggested [8]). The mathe-
matical complexity of the Chapman-Enskog analysis ob-
scures the underlying physical picture.

Therefore, we use a simpler system to demonstrate the
origin of the effect. Consider a head-on collision between a
heavier atom and lighter atom with short-ranged interac-
tions. We can define a persistence fraction, p, as the
fraction of the collisions in which the motion of an atom
persists in the same direction after the collision. From
simple considerations following from the conservation of
energy and momentum, it can be shown that the motion of
the heavy atom may persist in the same direction if its
velocity is sufficiently high, but the light atom can never do
so. We consider the collision of a heavier (h) and lighter (l)
particle in one dimension, where the interparticle interac-
tion is short-ranged. The collision satisfies the conservation
of momentum,

mhvh;f þmlvl;f ¼ mhvh;0 þmlvl;0; (4)

and the conservation of energy,

mhv
2
h;f þmlv

2
l;f ¼ mhv

2
h;0 þmlv

2
l;0; (5)

where mk, vk;0;, and vk;f are the mass, initial velocity, and

final velocity of particle k (the initial and final velocities
correspond to positions at which the particles are farther
apart than the range of their interaction). The final veloc-
ities can be determined from these two conservation equa-
tions,

vh;f ¼ vh;0 þ 2ml

mh þml

ðvl;0 � vh;0Þ (6)

(and an analogous equation holds for the light particle).
The motion of the heavier particle persists in the same

direction after the collision when the initial velocities of
the two particles satisfy the criterion

��������
vh;0

vl;0

��������>
2

mh=ml � 1
(7)

(note the lighter particle can never persist in the same
direction). In a fluid at temperature T, particles have a
distribution of velocities—thus there will be a probability
ph that the motion of the heavy particle persists in the same
direction after a collision. The velocity distribution is a
Gaussian function with mean of zero and standard devia-

tion �i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kTi=mi

p
(the Maxwell distribution in one di-

mension). Using the fact that the probability distribution
for the ratio of two Gaussian distributed variables is de-
scribed by a Cauchy distribution [22], the probability that
the criterion in Eq. (7) is satisfied is given by the cumula-
tive Cauchy function,

ph ¼ 1� 2

�
tan�1

�
2
ðmhmlÞ1=2
mh �ml

�
Th

Tl

�
1=2

�
; (8)

which can be simplified in the limit that mh�ml

ðmhmlÞ1=2 is small, to

yield

ph � 2

�

mh �ml

mh þml

�
Th

Tl

�
1=2

: (9)

Equation (9) shows that the motion of a heavier particle is
more likely to persist in the same direction after a collision
with a lighter particle when it comes from a region with
higher temperature. While this analysis was for a one-
dimensional collision involving only two particles, evi-
dence for the higher persistence fraction of heavier atoms
has been found in MD simulations of bulk systems, via
differences in the velocity autocorrelation function [23].
For lighter isotopes, the velocity autocorrelation function
became negative at intermediate times, due to the recoil
after a collision. In contrast, for the heavier isotopes the
velocity autocorrelation function never became negative,
showing that recoil after a collision occurred less fre-
quently for the heavy isotope.
This mass-dependent persistence effect can be visual-

ized by an analogy to American football—in a collision
between a (heavier) lineman and a (lighter) cornerback, the
lineman can push his way through the cornerback if he has
enough speed. In the same way, Eq. (9) shows that it is
more probable that a heavy particle will move from the hot
side to the cold side than vice versa. For this reason, the
cold side will become enriched in heavy isotopes, leaving
the hot side enriched in light isotopes, as has been found in
all experimental studies.
This material is based upon work supported by the

National Science Foundation under Grant Nos. EAR-
0944238 and EAR-1019749 (to D. J. L. and J. A.V.),

FIG. 2 (color online). Scaled presentation of experimental and
MD results for isotope fractionation. Key: Open symbols are
experimental results, filled symbols are MD results. � ¼ Si;
h ¼ O;e ¼ Mg; þ ¼ Fe; � ¼ Ca;x ¼ Sr; 5 ¼ Hf;v ¼ U.
(red) Huang et al., [4] (blue) Richter et al., [2,3] (green) Kyser
et al., [1], (black) new results.
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