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We study the asymptotic properties of fracture strength distributions of disordered elastic media by a

combination of renormalization group, extreme value theory, and numerical simulation. We investigate the

validity of the ‘‘weakest-link hypothesis’’ in the presence of realistic long-ranged interactions in the

random fuse model. Numerical simulations indicate that the fracture strength is well-described by

the Duxbury-Leath-Beale (DLB) distribution which is shown to flow asymptotically to the Gumbel

distribution. We explore the relation between the extreme value distributions and the DLB-type

asymptotic distributions and show that the universal extreme value forms may not be appropriate to

describe the nonuniversal low-strength tail.
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It has been known for centuries that larger bodies have a
lower fracture strength. The traditional explanation of this
size effect is the ‘‘weakest-link hypothesis’’: the sample is
envisaged as a set of noninteracting subvolumes with
different failure thresholds, and its strength is determined
by the failure of the weakest region. If the subvolume
threshold distribution has a power-law tail near zero, then
the strength distribution can be shown to converge to the
universal Weibull distribution for large sample sizes [1], an
early application of extreme value theory (EVT) [2].

Often failure occurs due to the presence and growth of
microcracks whose long-range interactions call the notion
of independent subvolumes into question. There have been
two broad approaches to address such interactions: fiber
bundle models and fracture network models [3]. Fiber
bundles transfer loads by various rules as individual fibers
fail; in some particular cases, exact asymptotic results for
the failure distribution have been derived [4] and do not
explicitly fall into any of the extreme value statistics
universal forms. Fracture network models consider net-
works of elastic elements with realistic long-range
interactions and disorder. A particularly simple approach
is based on the random fuse model (RFM) [3,5], where one
approximates continuum elasticity with a discretized scalar
representation. It has been suggested that, in the weak
disorder limit, fracture would be ruled by the longest
microcrack present in the system [6–9]. By using critical
droplet-theory-type arguments, one can show that an
exponential distribution of microcracks leads to the
Duxbury-Leath-Beale (DLB) distribution of failure
strengths [7], which again does not explicitly have an
extreme value form.

These studies raise three important questions. First, what
is the importance of elastic interactions in determining
the strength distributions, and does the weakest-link
hypothesis hold in the presence of such interactions?
Second, what is the relation between the DLB-type
asymptotic strength distributions and the universal forms
predicted by EVT? Third, how should one best extrapolate
from measured strength distributions to predict the proba-
bility of rare catastrophic events? We use renormalization
group (RG) ideas, EVT, and simulations of the two-
dimensional RFM to explore these questions. We conclude
that (i) the weakest-link hypothesis is valid for large
samples even in the presence of long-ranged elastic inter-
actions; (ii) the asymptotic forms of the strength distribu-
tion for these interacting models are compatible in disguise
with EVT, but of the Gumbel form rather than the Weibull
form; and (iii) the use of extreme value distributions to
estimate the probability of rare events, although common
in the experimental literature, is not always justified theo-
retically. DLB-type asymptotic distributions (or those de-
rived by Phoenix [4]) which depend on the details of the
material are necessary to safely extrapolate deep into the
tails of the failure distribution.
The RG and the EVT present two equivalent, yet con-

trasting, approaches to the study of the universal aspects of
extreme value distributions, in general [10], and fracture
strengths, in particular. The natural framework to inves-
tigate the role of interactions and the corrections to scaling
that emerge as the system size is changed is provided by
the RG theory. In contrast, the EVT facilitates the study of
domains of attraction and convergence issues. The nonun-
iversal, yet important, behavior of the low-reliability tail of
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the distribution is not described adequately by either the
RG or the EVT. To study such nonuniversal features, one
needs to develop DLB-type asymptotic theories.

Typically, a RG transformation proceeds in two steps: in
the first step, the system is coarse-grained by eliminating
short length-scale degrees of freedom, and then the result-
ing system is rescaled. The RG coarse graining for fracture
is equivalent to the weakest-link hypothesis: a system of
size L in d ¼ 2 dimensions survives at a stress � if its 4
ð¼ 2dÞ subsystems of size L=2 survive at the same stress.
This coarse graining leads to the following recursion rela-
tion for SLð�Þ—the probability that a system of size L does
not fail under a stress �:

SLð�Þ ¼ ½SL=2ð�Þ�4: (1)

The second step of the RG transformation is to rescale the
stress suitably and look for a fixed point distribution S� that
is invariant under RG,

S�ð�Þ ¼ R½S�ð�Þ� ¼ ½S�ða�þ bÞ�4: (2)

Instead of applying Eq. (1) iteratively like the RG, the EVT
formulation considers the large length-scale limit directly,

S�ð�Þ ¼ lim
L!1½SL0

ðAL�þ BLÞ�ðL=L0Þd ; (3)

where L0 is a characteristic length scale.
The functional Eqs. (2) and (3) are known to have only

three solutions: the Gumbel, the Weibull, and the Fréchet
distributions. Of these, only the Gumbel
{S�ð�Þ ¼ �ð�Þ �
exp½�e��, � 2 <, a ¼ 1, b ¼ log4g and the Weibull

[S�ð�Þ ¼ ��ð�Þ � e���
, �, �> 0, a ¼ 4ð�1=�Þ, b ¼ 0]

distributions are relevant for fracture. The large length-
norming constants, AL and BL, satisfy the following
asymptotic relations, A2L=AL ! 1=a and jB2L �
BLj=AL ! b=a.

To test the validity of the weakest-link hypothesis
[Eq. (1)] in the presence of long-range elastic interactions,
we perform large-scale simulations of the RFM [3,5],
considering a tilted square lattice (diamond lattice) with
L� L bonds of unit conductance. Initially, we remove a
fraction 1� p of the fuses at random, where p is varied
between 1� p ¼ 0:05 and 1� p ¼ 0:35 (the percolation
threshold for this model is at p ¼ 1=2). Periodic boundary
conditions are imposed in the horizontal direction, and a
constant voltage difference, V, is applied between the top
and the bottom of the lattice system bus bars. The
Kirchhoff equations are solved to determine the current
distribution on the lattice. A fuse breaks irreversibly when-
ever the local current exceeds a threshold that we set to
one. Each time a fuse is broken, we recalculate the currents
in the lattice and find the next fuse to break. The process is
repeated until the system is disconnected. In the present
simulations, we have considered system sizes from L ¼ 16
to L ¼ 1024 and various values of p. To explore the low-
strength tail which is beyond the accessible range of most

experiments, we typically average our results over 105

realizations of the initial disorder. The fuse model is
equivalent to a scalar elastic problem. Using this equiva-
lence, the strain is defined as � ¼ V=L and the stress is
given by � ¼ I=L, where I is the current flowing in the
lattice. The fracture strength is defined as the maximum
value of � during the simulation.
The RG coarse-graining step [Eq. (1)] produces a natural

test for the weakest-link hypothesis. In Fig. 1, we report the
survival probability SLð�Þ for different system sizes L,
compared with those for systems of size L=2, rescaled
according to Eq. (1). The agreement between the two
distributions is almost perfect for L=2 � 32, indicating
that Eq. (1) is satisfied asymptotically. Corrections to
scaling due to the effect of distant microcracks are ex-
pected to decay as 1=L2, as can be shown by a direct
calculation, but are too small for us to detect in simulations
(Fig. 1). We also tested wide rectangular systems with
Lx ¼ 2Ly, finding larger corrections, scaling roughly as

1=L, which are still irrelevant in the large system size limit.
Duxbury et al. related the survival distribution to the

distribution of microcrack widths w [7]. At the beginning
of the simulation, the ‘‘per-site’’ probability distribution of

a crack of width w is Pðw<w0Þ ¼ 1� e�w0=w0 , where
w0 ��1= log2ð1� pÞ [11]. Hence, the distribution of
the longest crack, wm, in a lattice with L

2 sites, is given by

Pðwm < w0Þ ¼ ð1� e�w0=w0ÞL2
: (4)

The stress at the tip of a crack of width w is asymptotic to
�K

ffiffiffiffi
w

p
, where � is the applied far-field stress and K is a

lattice-dependent constant. A sample survives until the
largest crack becomes unstable when its tip stress reaches
a threshold �th ¼ �K

ffiffiffiffi
w

p
. Therefore, we have
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FIG. 1 (color online). Testing the weakest-link hypothesis by
comparing the survival probability SLð�Þ for a L� L network
(solid lines) with that predicted by the weakest-link hypothesis,
SL=2ð�Þ4 (dotted lines), for 1� p ¼ 0:10. Note the excellent

agreement even for moderate system sizes.
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SLð�Þ ’
�
1� e�ð�0=�Þ

�
L2

’ DLð�Þ; (5)

where �0 � �th=K
ffiffiffiffiffiffi
w0

p
and DLð�Þ � exp½�L2e�ð�0=�Þ2�

is the DLB distribution. To apply the above derivation to
the failure stress, we first check the distribution of micro-
crack lengths at peak load. As shown in Fig. 2, the distri-
bution is exponential, but, due to damage accumulation,
the slope of the tail changes with respect to the initial
distribution. This appears to be due to bridging events in
which two neighboring cracks join, leading to a modifica-
tion of Eq. (5), as discussed in Ref. [7]. Thus, damage
accumulation, although very small, is relevant because it
changes the exponent of the microcrack distribution. The
exponential form of the crack length distribution tail,
however, suggests that the DLB form should still be valid,
as demonstrated in Fig. 3. In particular, the average failure

stress scales as h�i ¼ �0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðL2Þp

[Fig. 3(a)] and the
distributions for different L all collapse into a
straight line when plotted in terms of rescaled coordinates
[Fig. 3(b)].

Our arguments thus far are seemingly paradoxical. On
the one hand, we have argued on very general grounds that
the distribution of failure strengths must be either Gumbel
or Weibull, while, on the other hand, we have checked that
the failure distribution for fuse networks is of the rather
different form proposed by Duxbury et al. How can this
‘‘paradox’’ be resolved? While it is not guaranteed that a
microscopic survival distribution will lead to a fixed
point under linear rescaling [Eqs. (2) and (3)], the DLB
distribution does converge to the Gumbel form, i.e.,

lim
L!1DLðAL�þ BLÞ ¼ �ð�Þ; (6)

as can be demonstrated by a straightforward calculation

using AL ¼ �0=f2½logðL2Þ�3=2g and BL ¼ �0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðL2Þp

.
The above result is striking because fracture distributions
are usually assumed to not be of the Gumbel form, since
fracture must happen at positive stress, while the Gumbel
distribution has support for negative arguments, as well.
This is akin to arguing that the normal distribution is not
valid for test scores since scores must always be positive.
Nonetheless, it brings us to the issue of convergence and
validity of extreme value distributions as opposed to DLB-
type distributions.
The extreme value distributions, S�ð�Þ [ ¼ �ð�Þ or

��ð�Þ], are a uniform approximation to the true
survival function, SLð�Þ, for all � in the limit of
large L, i.e.,
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FIG. 2 (color online). Crack width distributions at peak load,
1� p ¼ 0:10. The initial distribution of microcrack widths
[NðwÞ is the number of clusters of width w] is exponential
with slope � � log2ð1� pÞ (dotted line). As the system is
loaded, a few bonds break before catastrophic failure; these
bonds usually connect smaller clusters, producing extra cracks
at large widths. The resulting crack width distribution at the peak
load exhibits a size-dependent crossover to a different exponen-
tial slope. Solid lines represent fits to an exponential.
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FIG. 3 (color online). Testing the DLB distribution of failure
stresses. (a) The average failure stress as a function of system
size L at various bond fractions p (symbols) can be fit well by
the DLB form (solid lines), except close to the percolation
threshold (1� p > 0:3). (b) A collapse of the strength distribu-
tion for different system sizes at 1� p ¼ 0:1, such that the DLB
form would collapse onto a straight line.
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lim
L!1

�
sup
�2<

��������SLð�Þ � S�
�
�� BL

AL

���������
�
¼ 0: (7)

In contrast, DLB-type distributions [12] are based on
material details and are asymptotically correct in the
low-reliability tail, i.e.,

lim
L!1

�
lim
�!0

1�DLð�Þ
1� SLð�Þ

�
¼ 1: (8)

Note that the uniform convergence in Eq. (7) does not
bound the relative error in the low-reliability tail, while
the asymptotic convergence in Eq. (8) does.

The above discussion hints at an underlying question:
How does one accurately predict the probability of rare
small-strength events with limited experimental data? The
standard practice is to measure the failure distribution of
construction beams or microcircuit wires, fit to the univer-
sal Weibull or Gumbel form, and extrapolate. However, as
we have argued, this approach can lead to incorrect esti-
mates. The low-reliability tail is nonuniversal and must be
modeled by a theory that, like DLB, accounts for micro-
scopic details (see also [13]). Such theories, analogous to
critical droplet theory (low temperatures), instantons
(low @), and Lifshitz tails (low disorder, deep in the band
gap) are, by construction, accurate in the low-reliability
tail. In this case, a fit to the Weibull or Gumbel form
overestimates the low-stress failure probability and hence
might be appropriate as a conservative estimate (e.g.,
construction beams) but not when optimizing a design
(e.g., circuits). It is interesting to observe that usually the
RG and the critical droplet theory address continuous and
abrupt phase transitions, respectively; yet, here, these two
approaches both apply to fracture.

The convergence to extreme value distributions can be
extremely slow [13]. For the RFM, let z be the number of
standard deviations up to which the Gumbel approximation
is accurate within a relative error of �. By using
the Edgeworth-type expansions for the extreme value
distributions [14], we find

z�ffiffiffi
6

p ¼
8<
:

ffiffiffiffi
�

p
exp

�
�

ffiffiffi
�

p
2 exp

�
�

ffiffiffi
�

p
2 exp½. . .�

��
; � < 4e2

log�� 2 logflog�� 2 log½. . .�g; � > 4e2;

where the ellipses indicate an infinite recursion and � ¼
�ð4=3Þ logð1� �Þ logðL2Þ. For an accuracy of 10% at 1
standard deviation, a sample volume of L2 � 1018 is re-
quired, while, at 2 standard deviations, the required sample
volume is about L2 � 10264. As a comparison, for the
Gaussian approximation to the mean of a sample of
Mð	 1Þ random variables (normalized so that E½X� ¼ 0,

E½X2� ¼ 1, and E½X3� ¼ �), we get z��1=3 þ ��1=3 þ
Oð��4=3Þ, where � ¼ 6�

ffiffiffiffiffi
M

p
=�; thus, z � 3 for � ¼ 0:1,

M ¼ 3000, and � ¼ 2, where the value � ¼ 2 corresponds
to the standard exponential distribution. However, the uni-
versal extreme value forms are not always dangerous for

extrapolation. One can show that they are valid asymptotic
forms, in the manner of Eq. (8), if they satisfy the condition
of tail equivalence ([15], p. 102, and [16]):

lim
�!0

1� SLð�Þ
1� S�ð�Þ ¼ C; 0<C<1: (9)

The success of the classical example of a Weibull distri-
bution of failure strengths emerging from a power-law
microcrack length distribution may be due to the tail
equivalence of the microscopic and the Weibull
distributions.
In conclusion, by using a combination of renormaliza-

tion group, extreme value theory, and numerical simula-
tions, we have shown that the failure strength of an
elastic solid with a random distribution of microcracks
follows the DLB distribution which asymptotically falls
into the Gumbel universality class. The nonuniversal
low-reliability tail of the strength distribution may not be
described by the universal extreme value distributions, and
thus the common practice of fitting experimental data to
universal forms and extrapolating in the tails is question-
able. Theories that account for microscopic mechanisms of
failures [13]—the DLB distribution, for instance—are
required for the accurate prediction of low-strength fail-
ures. In our study, the emergence of a Gumbel distribution
of fracture strengths is surprising and brings into question
the widespread use of the Weibull distribution for fitting
experimental data.
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