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The interaction of passing-ion drift orbits with spatially inhomogeneous but purely diffusive radial

transport is demonstrated to cause spontaneous toroidal spin-up in a simple model of the tokamak edge.

Physically, major-radial orbit shifts cause orbit-averaged diffusivities to depend on vk, including its sign,

leading to residual stress. The resulting pedestal-top intrinsic rotation scales with Ti=B�, resembling

typical experimental scalings. Additionally, an inboard (outboard) X point enhances co- (counter)current

rotation.
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Rotation patterns strongly affected by turbulent momen-
tum transport are broadly observed in nature, for example,
in atmospheric flows, stellar interiors, and accretion disks
[1]. Laboratory tokamak plasmas are observed to rotate
toroidally in the absence of applied torque, with edge
rotation directed with the plasma current (cocurrent), often
proportional to plasma stored energy W over plasma cur-
rent Ip, and reaching tenths of the ion thermal speed vti

[2,3]. Such intrinsic rotation is of practical as well as
fundamental interest, since it stabilizes certain instabilities
[4] and contributes to a sheared radial electric field Er,
believed to suppress turbulent transport [5]. Intrinsic rota-
tion is of special importance for the next-generation toka-
mak ITER, since � heating (nuclear fusion) applies no
torque [6].

The intriguing experimental findings have triggered a
broad theoretical search for the spontaneous rotation’s
physical origins. Although neoclassical (collisional trans-
port) effects have been considered [7,8], extensive experi-
mental evidence indicates that turbulence dominates
momentum transport [2,9]. Numerical efforts have inves-
tigated turbulent momentum transport in the core, both
linearly [10,11] and nonlinearly [12]. Models for intrinsic
rotation, also primarily core-focused, have treated quasi-
linear approximations [10,11,13–16], effects of inhomoge-
neity of the confiningmagnetic fieldB [11,14], nonresonant
correlations between the fluctuating radialE�B drift ~vE;r

and parallel velocity ~vk [17], and Stringer spin-up type

effects [18]. Some scrape-off-layer (SOL) effects have
been entertained [19,20] without systematic consideration
of the confined plasma’s response. Symmetry arguments
have strongly constrained gyrokinetic momentum transport
in radially local formulations [21].

Momentum transport in the tokamak edge presents par-
ticular challenges for theory. The turbulence is strong, with
statistics very different from quasilinear estimates [22]. It
is also strongly anisotropic, with parallel fluctuation length
Lk two orders of magnitude larger than the radial length

scale L? characterizing toroidal velocity and equilibrium
plasma variation [23–25]. Since parallel fluctuation

gradients kk � 1=Lk and the corresponding forces are ac-

cordingly weak, turbulently accelerated ~vk and the result-

ing nondiffusive effects [15–17] are smaller than simple
diffusive momentum transport by kkL? � 1 for realistic

edge parameters. Most of these effects are further reduced,

actually proportional to a symmetry-breaking hkki �
hk2ki1=2 � 1=Lk [16,21]. Since B varies on the scale length

of the major radius R0, the resulting momentum transport
effects scale relative to simple diffusion as L?=R0 � 1 in
the edge [11,14]. Furthermore, the interaction of edge and
SOL makes the problem inherently radially nonlocal. For
example, the amplitude of the (unnormalized) turbulent
fluctuating potential decreases in the radial direction on a
short length scale L� � L? [26]. Given these experimental

facts, the present work analyzes a simplified, purely dif-
fusive kinetic transport model, setting parallel acceleration
identically to zero but retaining a model edge and SOL,
passing-ion drift orbit excursions, and spatial variation of
the diffusivity, finding differential transport of co- and
countercurrent ions to cause residual stress and consequent
intrinsic rotation levels similar to those seen in experiment.
Analysis begins with a model axisymmetric drift-kinetic

transport equation for the ions:

@tfi þ v@yfi � �v2ðsinyÞ@xfi �DðyÞ@xðe�x@xfiÞ ¼ 0;

(1)

representing an ensemble-averaged L?=a; 1=q; a=R0;
cEr=B�vti � 1 reduction of Ref. [27] in a radially thin
simple-circular magnetic geometry with reference poloi-
dal, toroidal, and total magnetic field strengths B�, B�,

and B0, respectively, minor radius a, safety factor
q ¼: aB�=R0B�, and positive toroidal field [28]. The ion

parallel distribution function fiðx; y; v; tÞ is normalized to
pedestal-top ion density over thermal speed nijpt=vtijpt,
and the parallel velocity v is normalized to vtijpt, positive
for cocurrent motion. The radial position x, poloidal posi-
tion y, and time t are, respectively, normalized to L�, a,

and the ion transit time aB0=B�vtijpt. Transport by turbu-

lent fluctuations is modeled with an inhomogeneous
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turbulent diffusivity, normalized to L2
�B�vtijpt=aB0 and

assumed separable, with arbitrary poloidal dependence
DðyÞ, decaying exponentially in x. Although phenomeno-
logical, the assumed purely diffusive transport provides an
important check on the common belief that nondiffusive
transport is required for intrinsic rotation. The dimension-
less parameter � ¼: q�ijpt=L�, with �i the thermal ion

gyroradius, indicates the passing-ion orbit width relative
to the radial turbulence inhomogeneity, taking values
around 1=4 for typical ASDEX-Upgrade (AUG) H mode
parameters [29]. Collisions are neglected, a reasonable
approximation if pedestal-top ions escape without experi-
encing a collision, roughly for �ii�cr < 1, with �ii the
velocity-dependent ion collision rate and �cr the pedestal
ion stored energy over the ion heat flux. For thermal
pedestal-top ions, �ii�cr takes values around 1 for typical
H modes in AUG, JET, and DIII-D, so superthermal
pedestal-top ions tend to exit the plasma collisionlessly
while subthermal ones do not. Boundary conditions are
fið�1; yÞ ! fi0ðvÞ, fið1; yÞ ! 0, fiðx<0;y0Þ¼fiðx<0;
y0þ2�Þ, fiðx > 0; y0; v > 0Þ ¼ 0, and fiðx > 0; y0 þ 2�;
v < 0Þ ¼ 0, with y0 the poloidal X-point angle. Equa-
tion (1) is invariant to a rigid toroidal rotation vrig, nor-

malized to vtijptB�=B0 and positive for cocurrent motion,

and trivially conserves a simplified toroidal angular mo-
mentum

Rðvþ vrigÞfi dv, particles
R
fi dv, and energyRð1þ v2=2Þfi dv.

Equation (1) can be approximately analytically solved v
by v in steady state for both large and small effective
diffusivity Deff , results agreeing for Deff � 1. The solution
procedure is briefly described here, with details given
in Ref. [28]. Since v appears only as a parameter,
v-dependent variable transforms can greatly simplify
Eq. (1). First, use new spatial variables

�x ¼: x� �vðcosy� cosy0Þ; (2a)

�y ¼: D�1
y0 ðvÞ

Z y

y0

Dðy0Þe��vðcosy0�cosy0Þdy0; (2b)

with Dy0ðvÞ¼:
R
y0þ2�
y0

Dðy0Þexpð��vðcosy0 �cosy0ÞÞdy0.
Physically, �x is a drift-surface label and Dy0 an orbit-

averaged diffusivity. Next, for v < 0, take �y ! 1� �y.

Finally, transform from �x to u ¼: e �x=2, obtaining

@ �yfi ¼ ðDeff=4Þð@2ufi � u�1@ufiÞ (3)

for fiðu; �y; vÞ, in which DeffðvÞ ¼: Dy0ðvÞ=jvj. Boundary
conditions are now fið0; �yÞ ¼ fi0ðvÞ, fið1; �yÞ ! 0,
fiðu < 1; 0Þ ¼ fiðu < 1; 1Þ, and fiðu > 1; 0Þ ¼ 0. The nor-
malized flux of particles with velocity v through any
closed poloidal contour, �ðvÞ, takes the simple form

�ðvÞ ¼ � 1

2
Dy0ðvÞu�1

Z 1

0
@ufi d �y; (4)

evaluated at any constant u � 1.
Equation (3) shows the original problem to reduce to a

one-parameter family of otherwise-identical differential

equations. Remarkably, the spatially constant effective
diffusivity Deff depends not only on the magnitude of v
but also on its sign. Physically, as shown in Fig. 1, this
symmetry breaking results from the fact that co- (counter)
current ions’ drift orbits are displaced major-radially out-
wards (inwards). For the typical case of turbulent diffusiv-
ities larger at the outboard, countercurrent ions experience
larger orbit-averaged diffusivities. Preferentially exhaust-
ing countercurrent ions represents a cocurrent residual
stress, although momentum transport at any given spatial
point is purely diffusive.
In solving Eq. (3), a Laplace transform approach similar

to Ref. [30] yielded the exact Green’s function

Gðu; 	; �Þ ¼ 2u

Deff�
exp

�
�	2 þ u2

Deff�

�
I1

�
2u	

Deff�

�
; (5)

in terms of which the solution may be written as

fiðu; �yÞ ¼ fi0e
�u2=Deff �y þ

Z 1

0
fið	; 0ÞGðu; 	; �yÞd	: (6)

A first-order iterative approximation fð1Þi , obtained by set-
ting fið	; 0Þ to fi0 expð�	2=DeffÞ in Eq. (6), was shown to
yield an approximate normalized flux �=fi0jvj with an

absolute error strictly less thanmin½0:58D1=2
eff ð1�e�1=Deff Þ;

0:75=D3=2
eff �, tight bounds for large Deff . For small Deff , a

two-region solution may be used, representing fi with a
Fourier series for u < 1 (edge) and Laplace transforming
for u > 1 (SOL), requiring continuity in fi and @ufi at
u ¼ 1, except possibly at the single point u ¼ 1, �y ¼ 0.
The resulting edge and SOL ordinary differential equations
possess explicit solutions in terms of modified Bessel
functions. Slightly generalizing Ref. [31], one may then
show that continuity requires the edge solution to satisfy

fi � � 1

2
D1=2

eff

1ffiffiffiffi
�

p
Z �y

0

@ufi dy
0ffiffiffiffiffiffiffiffiffiffiffiffiffi

�y� y0
p � 1

8
Deff

Z �y

0
@ufi dy

0 (7)

FIG. 1 (color online). Cocurrent (co) and countercurrent (ctr)
passing-ion drift orbits over turbulence, plotted for a straight-
down (a) and inboard (b) X point. Darker shading indicates
stronger diffusivity. Co (ctr) orbits are displaced major-radially
outward (inward) as shown, regardless of the sign of B� or Ip.
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at u ¼ 1. The resulting dense matrix for the Fourier co-
efficients has been solved numerically at various Deff ,
retaining 10 000 modes in �y.

The two approximate solutions

�

fi0jvj �
�
Deff=ð1þ a1D

1=2
eff þ a2DeffÞ; Deff & 1

� 1
2Deff

R
1
0 @uju¼1ðfð1Þi =fi0Þd �y; Deff * 1

(8)

are well-approximated for all Deff by

�

fi0jvj �
1

4
ln

�
1þ X8

j¼2

cjD
j=2
eff

�
� ln

�
1þDeff

e


�
; (9)

with a1 ¼ 0:8224, a2 ¼ 0:1763, c2 ¼ 4, c3 ¼ �4a1,

c4 ¼ 4a1 þ e4=ð1þa1þa2Þ � 5� 9e�4
, c5 ¼ c7 ¼ 0, c6 ¼
8e�4
, c8 ¼ e�4
, and Euler’s constant 
 � 0:5772. The
second approximation is used for the simplified explicit
forms in Eqs. (11) and (12) and corresponding plots, and
the first for all other plots. The results of Eqs. (8) and (9) are
plotted in Fig. 2(a), along with the large-Deff error bounds.

Explicit forms for the normalized fluxes of particles,
momentum, and parallel heat may now be obtained for
any specified fi0ðvÞ and DðyÞ. Assuming a Maxwellian

fi0ðvÞ ¼ e�v2=2=ð2�Þ1=2 and simple ballooning form
DðyÞ ¼ D0ð1þ dc cosyÞ, thus
DeffðvÞ ¼ 2�D0e

�v cosy0½I0ð�vÞ � dcI1ð�vÞ�=jvj; (10)

the relevant flux moments may be reasonably approxi-
mated for small � as

�p ¼:
Z 1

�1
� dv �

ffiffiffiffi
2

�

s
g1; (11a)

� ¼:
Z 1

�1
v� dv � 8�

ffiffiffiffi
2

�

s �
cosy0 � dc

2

�
ðg3 � g5Þ; (11b)

Qk ¼:
Z 1

�1
v2

2
� dv �

ffiffiffiffi
2

�

s
g3; (11c)

in which gpðD0Þ ¼: lnð1þ 2�D0=e

p1=2Þ. The integrands

are plotted in Fig. 2(b), summed over the sign of v. (All

plots use representative AUG H mode values D0 ¼ 0:033,
dc ¼ 0:8, y0 ¼ �5�=8, and � ¼ 0:28.)
The total momentum flux, incorporating vrig, is just

vrig�
p þ�. Since toroidal rotation damping is very

weak [32], a vanishing momentum input implies that mo-
mentum flux must also vanish, resulting in the pedestal-top
intrinsic rotation rate

vint ¼ � �

�p � 8�ðdc=2� cosy0Þ g3 � g5
g1

; (12)

plotted in Fig. 3(a). Alternatively, one may balance an
applied neutral-beam injection (NBI) torque with the out-
ward momentum flux resulting from the NBI-driven ion
heat flux. For zero pedestal-top toroidal rotation, vrig ¼ 0,

one must set the unbalanced NBI fraction funb ¼:
ðPco

NBI � Pctr
NBIÞ=PNBI to

funb ¼ fc
2fNBI

B�

B0

vNBI

vtijpt
�

�p þQk
; (13)

in which fNBI is the fraction of heating by NBI, fc is the
fraction of heat transported by ions, and vNBI is the beam
ion velocity. The ratio�=ð�p þQkÞ is plotted in Fig. 3(b).
Since vNBI=vtijpt is typically large, funb may be a signifi-

cant fraction of �1, as observed in Ref. [33].
Several features of this solution deserve comment. First,

the steady-state results given in Eqs. (12) and (13) are due
to a balance between large momentum transport terms
[Fig. 2(b)], so they are robust. Relaxation time to the
edge intrinsic rotation profile should occur roughly on an
ion transport time through the pedestal, ��cr. The
v-asymmetric diffusion � is independent of the toroidal
velocity and its radial gradient, so �� represents a resid-
ual stress. For typical experimental parameters, it acts in
the cocurrent direction with experimentally relevant mag-
nitude. The dimensional intrinsic rotation prediction, given
here for small D0, is

vdim
int � 1:04

B�

B0

�
dc
2
� cosy0

�
q�ijpt
L�

vtijpt /
Tijpt
B�L�

: (14)

The 1=B� dependence corresponds to experimentally ob-
served 1=Ip scalings [2,3], while proportionality to ion
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FIG. 2 (color online). (a) Normalized flux as a function of the
v-dependent effective diffusivity, with uniform approximation
(thin solid black line), small-Deff approximation (thick dashed
red line), large-Deff approximation (thick solid green line), and
large-Deff error bounds (thin dashed green lines). (b) Speed
distribution of fluxes of particles, momentum, and parallel
heat, assuming a Maxwellian at the inner boundary.
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FIG. 3 (color online). Normalized intrinsic rotation velocity
vint (a) and unbalanced NBI fraction�=ð�p þQkÞ (b) plotted as
functions of drift orbit width � for several values of poloidal
X-point angle y0, with numerical integrals (thick dashed lines)
and analytical approximations (thin solid lines).
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temperature Tijpt provides an alternative explanation for

recent observations [25,34]. Cocurrent spin-up at the L-H
transition [2,3] is expected due to the increase in Tijpt and
probable decrease in L�. The predicted dependence on the

X-point poloidal angle has yet to be experimentally tested.
The physics presented here may also have implications for
internal transport barrier rotation: For outboard-ballooning
and radially increasing diffusivity (as outside an internal
transport barrier), the asymmetric diffusivity causes a
countercurrent core rotation increment, as seen in
Ref. [35].

Simplifications used in this model must be kept in mind.
The presented calculations omitted both the rB drift and
the radial electric field Er, outside the latter’s contribution
to vrig. While the rB drift has only a modest qualitative

effect, a uniform uncanceled poloidal E�B drift of mag-
nitude approaching vtijptB�=B0 may contribute a non-

negligible residual stress, a transport effect due to a shifted
relation between Dy0 and Deff [28]. Treatment of sheared

Er effects, E�B divergence, or collisions would require
nontrivial extensions to the theory. Direct collisional ef-
fects on the rotation-driving flux � may often be small,
since� results mainly from ions that are somewhat super-
thermal at the pedestal top [Fig. 2(b)] and, thus, very
superthermal at the separatrix, with an accordingly low
collision rate. However, lower-energy ions may affect both
Er and the rotation saturation vrig�

p. Finally, recall that the

turbulence parameters are taken as an input to the present
model, not calculated self-consistently.

In summary, radial displacements of passing-ion orbits
and typical tokamak-edge turbulence inhomogeneity are
shown to result in orbit-averaged diffusivities that depend
on the sign of vk. Even in the absence of nondiffusive

effects, this results in residual stress and corresponding
pedestal-top intrinsic rotation at experimentally relevant
levels. The rotation is cocurrent for typical H mode
parameters and scales with Tijpt=B�, in agreement with

experimental observations.
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