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We study a classical billiard of charged particles in a strong nonuniform magnetic field. We provide an

adiabatic description for skipping motion along the boundary of the billiard. We show that a sequence of

many changes of regimes of motion from skipping to motion without collisions with the boundary and

back to skipping leads to destruction of the adiabatic invariance and chaotic dynamics in a large domain in

the phase space. This is a new mechanism of the origin of chaotic dynamics for systems with impacts.
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Billiard in a magnetic field is a popular model in non-
linear dynamics with possible applications in theory of
magnetism, plasma physics, solid state physics, and astro-
physics. In this model the motion of a charged particle in a
plane region with a perfectly reflected smooth boundary is
considered. A magnetic field is directed perpendicular to
the plane. If the magnetic field is strong enough, then
skipping along the boundary is possible. Figures 1 (a,b)
demonstrate two types of particle trajectories in such a
billiard for a uniform magnetic field.

This model was first studied in [1] and then in a series of
other papers, in particular, in [2–5]. It is shown in [1], that
for a strong uniform magnetic field the distance of the
center of the Larmor circle of the particle from the bound-
ary is an adiabatic invariant. The first and the second
order corrections to this adiabatic invariant are calculated
as well [1,2].

We consider the case of a nonuniform strong magnetic
field. We demonstrate that for the skipping motion the flux
of the magnetic field through the area bounded by the arc of
particle’s trajectory between two collisions with the bound-
ary and the corresponding segment of the boundary is an
adiabatic invariant (this is an analog of the magnetic
moment). We describe the skipping along the boundary
in the adiabatic approximation.

There is a very important difference between billiards
with uniform and nonuniform magnetic fields. In the latter
case the particle can change the regime of motion with
skipping along the billiard boundary to the regime of the
drift without collisions with the boundary, and vice versa.
We show that a sequence of such changes of regime of
motion leads to destruction of the adiabatic invariance
and chaotic dynamics in a large domain in the phase
space. This resembles destruction of adiabatic invariance
due to separatrix crossings in slow-fast Hamiltonian
systems [6–9].

Our approach to the description of skipping motion is
completely different from that in [1–5]. Unlike these pa-
pers, we do not use a billiard map and do not consider
imagined motion beyond the billiard’s boundary. Instead,

we consider the billiard as a slow-fast Hamiltonian system
and apply an adiabatic perturbation theory for analysis of
this system.
The motion of a charged particle in a plane under the

action of a magnetic field perpendicular to this plane is
described by the Hamiltonian system with the phase vari-
ables x, y, px, py, Hamiltonian H and symplectic structure

!2 (see, e.g., [10]):

H ¼ 1

2m
ðp2

x þ p2
yÞ

!2 ¼ dpx ^ dxþ dpy ^ dyþ "�1 e

c
Bðx; yÞdx ^ dy

(1)

Here x, y, px, py are coordinates and momenta of the

particle in some Cartesian coordinate systemOxy,m and e
are mass and charge of the particle, c is the speed of light,
"�1Bðx; yÞ is the strength of the magnetic field, " is a

(c)

(d)

FIG. 1. Two types of trajectories and corresponding phase
portraits.
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dimensionless positive constant. We consider the case of a
strong magnetic field: " � 1, and B� 1 does not vanish
anywhere.

We suppose that in the plane of the motion there is a
smooth curve L (the billiard boundary), and a collision of
the particle with L leads to the perfect (specular) reflec-
tion. In what followsL may be open or close, but it should
not have self intersections. The curve L has a parametric
representation x ¼ XðsÞ, y ¼ YðsÞ, where s is the arclength
along L. As it is a standard in billiard problems (see, e.g.,
[4,5,11]) introduce nearL new coordinates r, s, where r is
the distance fromL and s is the arclength of the projection
of particle position onto L. Thus x ¼ XðsÞ þ rY0ðsÞ, y ¼
YðsÞ � rX0ðsÞ. Here (0) denotes the derivative with respect
to s. We will consider the dynamics in the domain r > 0.

Introduce new momenta pr, ps by means of the canoni-
cal transformation ðx; y; px; pyÞ � ðr; s; pr; psÞ with the

generating function W ¼ xpx þ ypy, where x, y are ex-

pressed via r, s. Then pr ¼ ð@x=@rÞpx þ ð@y=@rÞpy, ps ¼
ð@x=@sÞpx þ ð@y=@sÞpy, and dpx ^ dxþ dpy ^ dy ¼
dpr ^ drþ dps ^ ds. Also dx ^ dy ¼ detð@ðx; yÞ=@ðr; sÞÞ
dr ^ ds ¼ ð1þ kðsÞrÞdr ^ ds, where kðsÞ ¼ �Y0X00 þ
X0Y00 is the curvature of L. In the new variables the
dynamics is described by the following Hamiltonian and
symplectic structure:

H ¼ 1

2m

�
p2
r þ p2

s

ð1þ kðsÞrÞ2
�

!2¼dpr^drþdps^dsþ"�1ð1þkðsÞrÞe
c
Bðr;sÞdr^ds

(here we keep notation B for the strength of the magnetic
field expressed via the new coordinates r, s). Introduce a
canonical momentum P s ¼ ps þ "�1Aðr; sÞ, where
Aðr; sÞ ¼

Z r

0
ð1þ kðsÞ�Þe

c
Bð�; sÞd�¼ e

c
ðB0ðsÞrþOðr2ÞÞ;

and B0ðsÞ ¼ Bð0; sÞ. In the new variables the symplectic
structure takes the canonical form: !2 ¼ dpr ^ drþ
dP s ^ ds. Thus the dynamics in the new variables is
described by the canonical Hamiltonian system with the
Hamiltonian

H ¼ 1

2m

�
p2
r þ

�
P s � "�1Aðr; sÞ

1þ kðsÞr
�
2
�

(2)

For the description of the dynamics near L introduce
new variables and time: �r ¼ r=", �s ¼ s=", �t ¼ t=". In the
new variables the motion between collisions with L is
described by the canonical Hamiltonian system with the
Hamiltonian

H ¼ H0ð �r; pr; "�s;P sÞ þOð"�r2Þ
where

H0 ¼ 1

2m

�
p2
r þ

�
P s � e

c
B0ð"�sÞ�r

�
2
�
:

At collisions (r ¼ 0), �s and P s are continuous, while pr

changes the sign.
Consider dynamics described by the Hamiltonian H for

�r� 1. In this case pr, �r are fast variables, while P s, "�s are
slow variables. The system under consideration is a slow-
fast Hamiltonian system with impacts. For description of
dynamics in this system one can use an adiabatic pertur-
bation theory (see, e.g., [10]). This theory was developed
for smooth slow-fast Hamiltonian systems, but it can be
used for systems with impacts as well [12,13].
Consider the system with Hamiltonian H0 at frozen

values of s ¼ "�s and P s (the unperturbed system). This
is a Hamiltonian system with 1 degree of freedom: an
oscillator with impacts. Phase portraits of this system are
shown in Figs. 1(c) and 1(d). Figure 1(c) demonstrates
trajectories without collision (shown in the gray color)
and with collisions with the boundary. In Fig. 1(d) each
trajectory contains a collision. A trajectory with H0 ¼ h
contains a collision if h > P 2

s=ð2mÞ. The action of this
trajectory Iðh; s;P sÞ is the area surrounded by this trajec-
tory and by the corresponding segment of the pr axis,
divided by 2�. Calculating this area, we get

2�I ¼ 2hmc

eB0ðsÞ ½�� arccosð1� �Þ þ ð1� �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2� �Þ

p
�
(3)

where � ¼ 1� P s=
ffiffiffiffiffiffiffiffiffiffi
2hm

p
. In the exact system, where s

and P s are changing, this action is an adiabatic invariant:
its value along trajectory is conserved with an accuracy�"
over time intervals �t� 1=" (thus t� 1) provided pr is
separated from 0 at collisions (or, which is the same, � >
const> 0). Inverting Eq. (3) we get h ¼ hðI; "�s;P sÞ. The
approximation in which I ¼ const and dynamics of �s,P s is
described by the canonical Hamiltonian system with
Hamiltonian h, is called an adiabatic approximation. In
this approximation

ds

dt
¼ @h

@P s

¼�@I=@P s

@I=@h
;

dP s

dt
¼�"

@h

@s
¼ "

@I=@s

@I=@h
:

These equations describe changing of s ¼ "�s and P s in
skipping motion with accuracy�". It is easy to check that
I ¼ e�=ð2�c"Þ, where �� " is the flux of the magnetic
field through the circular segment bounded by the arc of
the particle Larmor trajectory and L. Thus this flux is an
adiabatic invariant (value �=" along trajectory is con-
served with an accuracy �" over time intervals �t� 1=").
Consider the skippingwith initial values of energy h0 and

action I0. In adiabatic approximation along trajectory
Iðh0; s;P sÞ ¼ I0. If along trajectory B0ðsÞ grows and for
some s ¼ s� we have mch0=ðeB0ðs�ÞÞ ¼ I0, then at s ¼ s�
the Larmor circle recedes from the boundary. After the take
off particle moves in accordance with the guiding center
theory: the center of its Larmor circle drifts along the line of
constant of Bðx; yÞ (see Fig. 2). The speed of this drift �".
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Let L be a closed curve, and maxB0ðsÞ<mch0=ðeI0Þ.
Then in the adiabatic approximation there is no take off
from the boundary for a particle with h ¼ h0, I ¼ I0. One
can show using KAM theory that in this case the value of I
is conserved eternally with an accuracy �", and, in par-
ticular, there is no take off in the exact system. This
behavior is shown in Figs. 3(a) and 3(c) for the case
when L is the circle ðx� 1:5Þ2 þ y2 ¼ 1:52. Figure 3(a)
shows a segment of a trajectory of the particle, and
Fig. 3(c) shows the Poincaré section at y ¼ 0, py < 0.

An invariant curve is clearly seen in Fig. 3(c). Existence
of such invariant curves guarantees eternal conservation of
the adiabatic invariance of I. For the case of uniform
magnetic field (B ¼ const) an eternal adiabatic invariance
in a skipping motion is pointed out in [2].

Now consider the case when multiple changes of re-
gimes of the motion occur. The regime of skipping along
the boundary changes to a regime of drift in nonuniform
magnetic field without collisions with the boundary, which
changes to regime of skipping again, and so on. In the
adiabatic approximation this dynamics is periodic. The
points of landing on the boundary and take off from
the boundary are two points where the magnetic field has
the same value "�1mch0=ðeI0Þ, and on the arc of the
boundary joining these points the magnetic field is smaller
than this value. The drift without collisions is described by
the guiding center theory, see, e.g., [14]. The guiding
center moves along level lines of the function Bðx; yÞ join-
ing points of take off and landing: Bðx; yÞ ¼ mch0=ðeI0Þ.
This motion is described by the Hamiltonian system with

the Hamiltonian Eðx; yÞ ¼ "IeBðx; yÞ=ðmcÞ, where x and y
play roles of a momentum and a coordinate, respectively,
I ¼ I0 ¼ const. The time of skipping from the landing to
the take off �1. The time of drift from the take off to the
landing �1=". (Note that the Larmor period �").
However, change of regime of motion leads to a jump of

the value of adiabatic invariant, cf. [13]. This jump
occurs because of nonanalytic dependence of I on � near

take off and landing moments: 2�IeB0ðsÞ=ðhmcÞ � 1�
�5�3=2=4. Similarly to [13], one can derive an asymptotic
formula for this jump. Here we just estimate amplitude of
this jump as follows. One can introduce an improved
adiabatic invariant J ¼ I þ "u (see, e.g., [10]) such that
far from the moment of take off the difference of its values
at two subsequent collisions with the boundary �"3. Here
u is a function of phase variables, a first correction to the
adiabatic invariant. Close to the moment of the take off one
should take into account the smallness of �: using standard
formulas of adiabatic perturbation theory (see, e.g., [10])
one can show that the difference of values of J at two

subsequent collisions �"3@3I=@�3 � "3=�3=2. Here � is
taken at the moment of the first of these two collisions. The
decay of � between two collisions near take off�". Let us
sum up changes of J between �1=" collisions before take
off and take into account that for the last term in this sum
� ¼ �� � ". We get that the total change of J between all

collisions �"2=�1=2
� � "3=2. On the first Larmor round

after the last collision there is an additional change of J
due to difference of its definition for regimes with and
without collisions. This change is of order of the area
bounded by a dotted line in Fig. 1(c) for �� ", which is

FIG. 2. Particle trajectory in the system with the inhomoge-
neous magnetic field (strength of the field is shown by color),
Bðx; yÞ ¼ 1þ ððx� 0:5Þ2 þ y2Þ, " ¼ 0:1. Bottom panel demon-
strates time behavior of the adiabatic invariant I: black curve
corresponds to the time interval shown by dotted arrow on the
top panel and dotted curve corresponds to the first five Larmor
turns after take off.

FIG. 3. Fragments of two trajectories (without and with take
off) in the system with inhomogeneous magnetic field Bðx; yÞ ¼
1þ ððx� 0:5Þ2 þ y2Þ, " ¼ 0:1, and corresponding Poincaré
sections.
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again �"3=2. Thus the total change of J due to one change

of regime of motion �"3=2. This change depends on the
value ��=" and can be considered as a function of the
phase of the particle on the Larmor circle at the moment of
time when this circle touches the boundary at take off (and
similarly for landing). This change of J leads to a change of
the coefficient I in the Hamiltonian E of the guiding center

motion by a value�"3=2. As result, the time of this motion

changes by a value�"3=2"�1 ¼ "1=2. This leads to change

of Larmor phase �"1=2"�1 ¼ "�1=2 (we use here that
Larmor frequency �"�1). This means stretching of the
phase and loss of predictability: small change of Larmor
phase before take off is stretched with a coefficient

�"�1=2 � 1 at the next take off. The dynamics becomes
chaotic. Small changes of the adiabatic invariant for many
changes of regime of motion can be considered as a
sequence of independent random values. Summation of
these values leads to destruction of adiabatic invariance
on long time intervals. This is a new mechanism of the
origin of chaotic dynamics for systems with impacts. It
should be noted that for small enough " the size of
the domain of chaotic motion is of order 1 and does not
depend on ".

This mechanism of the origin of chaotic dynamics is
illustrated in Figs. 3(b) and 3(d) for the case when
the boundary L is the circle ðx� 1:5Þ2 þ y2 ¼ 1:52.
Figure 3(b) shows a segment of a trajectory of the particle,
and Fig. 3(d) shows the Poincaré section at y ¼ 0, py < 0.

We observe here a situation usually referred to as a
Hamiltonian intermittency (see, e.g., [15]). The motion
over a considerably long time occurs along a seemingly
regular orbit, but after a passing through a narrow domain
in the phase space it randomly switches to another regular
orbit. There are many systems that demonstrate such an
intermittent behavior with certain underlying mechanisms
of switching between regular trajectories (see, e.g.,
[6–9,16]). Jump of an adiabatic invariant at change of
regime of motion is a new such mechanism for systems
with impacts.

The dynamics of billiards in the magnetic field can be
considered as a simplified (but still realistic) model of the
charged particles motion in the vicinity of a strong gradient
of the magnetic field. In this case the so-called gradient
drift occurs and particles move along the boundary which
separates regions with strong and relatively weak magnetic
fields [14]. Such a situation is often observed in laboratory
plasma [17] and in a space plasma environment, where
magnetic field configurations with the strong gradients of
the magnetic field and closed field lines (so-called
plasmoids and magnetic islands [18], or other magnetic
boundaries, e.g., magnetopauses of planetary magneto-
spheres [19]) exist.

In conclusion, we described a new mechanism respon-
sible for the destruction of adiabatic invariance and the
origin of chaotic dynamics in the system with impacts: the
sequence of changes of motion types (with and without
collisions).
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