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We show that the powerful framework of transformation optics may be exploited for engineering the

nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of

coordinate-transformed Maxwell’s equations in the spectral domain, we derive the general constitutive

‘‘blueprints’’ of transformation media yielding prescribed nonlocal field-manipulation effects and provide

a physically incisive and powerful geometrical interpretation in terms of deformation of the equifrequency

contours. In order to illustrate the potentials of our approach, we present an example of application to a

wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials.

Our results provide a systematic and versatile framework which may open intriguing venues in dispersion

engineering of artificial materials.
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Spatial dispersion, i.e., the nonlocal character of the
electromagnetic (EM) constitutive relationships [1,2], is
typically regarded as a negligible effect for most natural
media. However, there is currently a growing interest in its
study, in view of its critical relevance in the homogenized
(effective-medium) modeling of many artificial EM mate-
rials of practical interest [3] (based, e.g., on small resonant
scatterers [4,5], wires [6–8], layered metallodielectric
composites [9,10], etc.), as well as in a variety of related
effects including artificial magnetism [11], wave splitting
into multiple beams [10,12,13], beam tailoring [14], and
ultrafast nonlinear optical response [15]. If, for most meta-
materials, spatial dispersion is seen as a nuisance, counter-
productive for practical applications [16], its proper
tailoring and engineering may add novel degrees of free-
dom in the wave interaction with complex materials [17].

The transformation optics (TO) paradigm [18,19] has

rapidly established itself as a very powerful and versatile

approach to the systematic design of artificial materials

with assigned field-manipulation capabilities (see, e.g.,

[20,21] for recent reviews). Standard TO basically relies

on the form-invariant properties of coordinate-transformed

Helmholtz [18] and Maxwell’s equations [19]. Recently,

alternative approaches have been proposed, based, e.g., on

direct field transformations [22], triple-space-time trans-

formations [23], and complex coordinate mapping [24],

which generalize and extend the class of ‘‘transformation

media’’ (e.g., to nonreciprocal, bianisotropic, single-

negative, indefinite, and moving media) that may be ob-

tained. Although the approach in [23] seems potentially

capable to account for nonlocal effects, attention and ap-

plications have been hitherto focused on local transforma-

tion media. In this Letter, we propose to apply the TO

approach to develop a systematic framework for the

engineering of nonlocal artificial materials, paving the
way to novel metamaterial devices and applications.
Our proposed approach is based on coordinate trans-

formations in the spectral (wave number) domain, where
nonlocal constitutive relationships are most easily dealt
with in terms of wave-number-dependent constitutive op-
erators. For simplicity, we start considering a distribution
of electric and magnetic sources (J0 and M0, respectively)
radiating an EM field (E0,H0) in a vacuum auxiliary space,
identified by primed coordinates r0 � ðx0; y0; z0Þ. In the
time-harmonic [ expð�i!tÞ] regime, and introducing the
spatial Fourier transform

~G 0ðk0Þ ¼
Z

G0ðr0Þ expð�ik0 � r0Þdr0; (1)

the relevant Maxwell’s curl equations can be fully algebr-
ized in the spectral (k0) domain, viz.,

ik0 � ~E0ðk0Þ ¼ i!�0
~H0ðk0Þ � ~M0ðk0Þ; (2a)

ik0 � ~H0ðk0Þ ¼ �i!"0 ~E
0ðk0Þ þ ~J0ðk0Þ; (2b)

with �0 and�0 denoting the vacuum electrical permittivity
and magnetic permeability, respectively. Throughout this
Letter, boldface symbols identify vector quantities and the
tilde � identifies spectral-domain quantities.
We now introduce a real-valued coordinate transforma-

tion to a new spectral domain k,

k 0 ¼ ~�TðkÞ � k ¼ ~FðkÞ; (3)

with the underline identifying a second-rank tensor opera-
tor and the superscript T denoting the transpose. Similar to
the spatial-domain TO, we exploit the form-invariant
properties of Maxwell’s equations in the mapped spectral
domain k [and associated, via (1), spatial domain r �
ðx; y; zÞ] in order to relate the corresponding fields
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(E, H), sources (J, M), and constitutive relationships (in
terms of relative permittivity and permeability tensors ~"
and ~�, respectively) to those in a vacuum [cf. (2)]

f~E; ~HgðkÞ ¼ ~��TðkÞ � f~E0; ~H0g½~FðkÞ�; (4a)

f~J; ~MgðkÞ ¼ det�1½~�ðkÞ�~�ðkÞ � f~J0; ~M0g½~FðkÞ�; (4b)

f~"; ~�gðkÞ ¼ det�1½~�ðkÞ�~�ðkÞ � ~�TðkÞ; (4c)

with detð�Þ denoting the determinant and the superscript
�T denoting the inverse transpose.

A few general considerations are in order. First, we note
that the relationships in (4) formally resemble those en-
countered in the standard (spatial-domain) TO approach
[19] and trivially reduce to them in the particular case of

linear spectral mapping [i.e., k-independent ~� in (3)],
which is fully equivalent to the local coordinate mapping

r0 ¼ ~��1 � r. However, for a general nonlinear spectral
mapping in (3), the resulting constitutive tensors in (4c)
are always k-dependent, i.e., the associated constitutive
relationships are nonlocal. Similar to the spatial-domain
TO approach, the spectral field or source transformations
in (4a) and (4b) may be used to systematically design a
desired response in a fictitious curved-coordinate spectral
domain (in terms of a given nonlocal transformation of a
reference field or source distribution in a vacuum). Such a
response may be equivalently obtained in an actual physi-
cal space filled up by a nonlocal transformation medium
whose constitutive ‘‘blueprints’’ are explicitly given by
(4c). Restrictions on the coordinate mapping in (3) may
be imposed so as to enforce specific physical properties,
such as passivity and/or reciprocity. For instance, it can

readily be verified that the Hermitian condition ~�TðkÞ ¼
~��ðkÞ yields a lossless medium, whereas the center-

symmetry condition ~�ðkÞ ¼ ~�ð�kÞ yields a reciprocal
medium.

In the spatial-domain TO, the choice of the coordinate
transformation is guided by intuitive geometrical consid-
erations essentially based on the geodesic path of light
rays. Likewise, our nonlocal TO approach admits a geo-
metrical interpretation in terms of direct manipulation of
the dispersion characteristics via deformation of the equi-
frequency contours (EFCs). While perhaps less intuitive,
such an interpretation is equally insightful and powerful, as
the geometrical characteristics (e.g., asymptotes, symme-
tries, inflection points, single or multiple valuedness) of the
EFCs fully determine the kinematical (wave vector and
velocity) properties of the wave propagation and reflection
or refraction [25]. Figure 1 schematically illustrates this
interpretation with reference to an ðx; zÞ two-dimensional
(2D) scenario where the EFC pertaining to the vacuum
space is given by k02x þ k02z ¼ k20 [Fig. 1(a)], i.e., a circle of
radius k0 ¼ !=c0 (the vacuum wave number, with c0 ¼
1=

ffiffiffiffiffiffiffiffiffiffiffi
"0�0

p
denoting the corresponding speed of light).

Figures 1(b) and 1(c) show two qualitative examples of
transformation-medium EFCs,

~F 2
xðkx; kzÞ þ ~F2

zðkx; kzÞ ¼ k20; (5)

which, depending on whether the mapping in (3) is single-
or double-valued, may feature a moderate deformation
[Fig. 1(b)] or the appearance of an extra branch [Fig. 1(c)],
respectively. Our geometrical interpretation therefore es-
tablishes a straightforward connection between the multi-
valued character of the mapping and the presence of
additional extraordinary waves.
Moreover, for the same 2D scenario above, assuming a

single-valued mapping and letting �0ðxÞ and �dðxÞ repre-
sent the aperture distributions of a transverse (electric or
magnetic) field at the input (z ¼ 0) and output (z ¼ d)
planes, respectively, in an unbounded material space, the
corresponding one-dimensional (1D) spatial spectra will be
related via

~� dðkxÞ ¼ expðikzdÞ ~�0ðkxÞ � ~TðkxÞ ~�0ðkxÞ; (6)

where the first equality arises from straightforward plane-
wave algebra and we have assumed

kz ¼ � i

d
log½ ~TðkxÞ�: (7)

Equation (6) may be interpreted as an input-output rela-
tionship of a shift-invariant linear system, in terms of the
modulation transfer function ~TðkxÞ. Within the framework
of our approach, Eq. (7) directly defines in explicit form the
EFC shape that is needed in order to engineer a desired
field-transformation effect between the input and output
planes. Accordingly, the possibly simplest spectral map-
ping (3) from the auxiliary vacuum space that can yield
[via (5)] such a desired shape is

~F xðkxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ

1

d2
log2½ ~TðkxÞ�

s
; ~FzðkzÞ ¼ kz: (8)

The above examples highlight the intriguing perspec-
tives of engineering the dispersion properties of the
transformation medium via the vector mapping function
~F in (3). Clearly, the practical applicability of this approach
relies on the possibility to synthesize anisotropic, nonlocal
artificial materials which, within given frequency and wave
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FIG. 1 (color online). Schematic of EFCs pertaining to (a) the
auxiliary vacuum space and the deformed versions obtained via a
(b) single-valued and (c) double-valued spectral coordinate
mapping. Also shown are the wave vectors and group velocities
pertaining to a refraction scenario (details in the text).
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number ranges, suitably approximate the blueprints in (4c).
While, compared with the better-established synthesis of
anisotropic, spatially inhomogeneous materials required
by standard spatial-domain TO, this may become signifi-
cantly more challenging from the technological viewpoint,
interesting nonlocal effects may still be engineered relying
on simple artificial materials for which nonlocal homogen-
ized models are available in the literature.

As an illustrative application example, we outline a
stepwise procedure to design a nonlocal transformation-
medium half-space so that a transversely magnetic polar-
ized (i.e., y-directed magnetic field) plane wave with
assigned wave vector k0 ¼ ki [with angle �i from the z
axis and associated group velocity v0gðkiÞ ¼ c0ki=jkij,
cf. Fig. 1(a)] impinging from a vacuum is split into two
transmitted waves with prescribed directions, i.e., group
velocity forming angles �t1 and �t2, respectively, with the
z axis. As schematically illustrated in Fig. 1, the wave
vector(s) kt pertaining to the wave(s) transmitted into the
transformation-medium half-space may be readily deter-
mined as the image(s) of the incident wave vector ki in the
deformed ECF(s) (5) subject to the tangential-wave-vector
continuity ktx ¼ kix and to the radiation condition
ReðktzÞ> 0. For a given transmitted wave vector kt, the
corresponding group velocity (normal to the deformed
EFC) is given by

v gðktÞ � @!

@k

��������ki

¼ � c0~J
TðktÞ � ~FðktÞ
j~FðktÞj

; (9)

with ~JðkÞ � @k0=@k denoting the Jacobian matrix of the
transformation in (3) and the � sign dictated by the radia-
tion condition ReðvgzÞ> 0. We first need to determine a

double-valued spectral-domain transformation (3) capable
of mapping [via (5)] the incident wave vector ki into two
transmitted wave vectors kt1 and kt2 characterized by a
conserved tangential (i.e., x) component and the desired
group-velocity directions, i.e.,

kt1x ¼ kt2x ¼ kix ¼ k0 sin�i; (10a)

vgxðkt1;2Þ
vgzðkt1;2Þ ¼ tan�t1;2; (10b)

with vg given by (9). A simple analytical solution to this

functional problem may be obtained by assuming a
variable-separated algebraic mapping of the form

~F xðkxÞ¼ kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0þa2k

2
x

q
; ~FzðkzÞ¼ kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0þb2k

2
z

q
; (11)

with the coefficients a0, a2, b0, and b2 to be determined.
First, by substituting (11) in (5) [and taking into account
(10a)], the above choice allows analytical closed-form
calculation of the transmitted wave vectors kt1 and kt2,
via a straightforward solution of a biquadratic equation
(see [26] for details). Next, by substituting kt1 and kt2 in
(10b) [with (9) and (11)], we obtain an analytically solv-
able system of two algebraic equations, whose solutions
constrain two coefficients (say, b0 and b2) in (11), thereby

defining a family of (infinite) coordinate transformations
which, for the given incidence conditions, yield the pre-
scribed kinematical characteristics (�t1 and �t2) of the two
transmitted waves (see [26] for details). For instance,
assuming an incidence angle �i ¼ 40	 and two transmis-
sion angles �t1 ¼ 70	 (i.e., positive refraction) and �t2 ¼
�45	 (i.e., negative refraction), Fig. 2(a) shows [solid
(blue) curves] the double-valued EFCs pertaining to one
such transformation (with parameters given in the caption).
Note that the two seemingly free parameters in the

transformation (a0 and a2) may be in principle exploited
to enforce additional conditions (e.g., at a different fre-
quency). Nevertheless, we found it useful to maintain the
flexibility endowed by such degrees of freedom in order to
facilitate the engineering of the transformation medium
required. Within this framework, from (4c), we first need

to define the tensor operator ~� associated [via (3)] to the

vector mapping ~F in (11). The possibly simplest choice

[27] is the diagonal form ~� ¼ diag½ ~Fx=kx; ~�yy; ~Fz=kz�,
where, for the assumed transversely magnetic polarization,

the component ~�yy represents a degree of freedom which

may be judiciously exploited so as to simplify the structure
of the arising transformation medium. Paralleling the spa-
tial TO approach, a desirable property, which may strongly
facilitate the scalability towards optical frequencies, is an
effectively nonmagnetic material (i.e., ~�yy ¼ 1) [28].

This is readily achieved by choosing ~�yy ¼ ~Fx
~Fz=ðkxkzÞ,

which yields [from (4c) and (11)] a uniaxial anisotropic
medium whose relevant permittivity components assume a
particularly simple variable-separated rational form
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FIG. 2 (color online). Examples of (a) EFCs and (b),
(c) constitutive parameters pertaining to a refraction scenario
featuring the splitting of a plane wave with incidence angle
�i ¼ 40	 into two transmitted waves with angles �t1 ¼ 70	
and �t2 ¼ �45	. Solid (blue) curves represent the TO-based
blueprints, obtained from (11) and (12) with a0 ¼ 0:877, a2 ¼
�0:0289k�2

0 , b0 ¼ 0:0934, and b2 ¼ �0:0014k�2
0 . Dashed (red)

curves pertain to the synthesized 1D PC (unit cell shown in the
inset) with "a ¼ 2:752, da ¼ 0:0668�0, "b ¼ �2:082, and
db ¼ 0:0332�0 (see [26] for details). The vertical dotted line
in (a) defines the incident wave number kix, from which the
transmitted wave vectors (marked with crosses) are determined.
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~" xxðkzÞ ¼ 1

b0 þ b2k
2
z

; ~"zzðkxÞ ¼ 1

a0 þ a2k
2
x

; (12)

whose behavior is shown [solid (blue) curves] in Figs. 2(b)
and 2(c) for the same parameters as above.

Interestingly, the parametrization in (12) closely resem-
bles the nonlocal homogenized constitutive relationships
derived in [9] for a 1D multilayered photonic crystal (PC),
thereby suggesting that our TO-based blueprints may be
approximated, at a given frequency and within limited
spectral-wave-number ranges, by such a simple artificial
material. Accordingly, we consider a 1D PC made of
alternating layers (periodically stacked along the x axis)
of homogeneous, isotropic materials, with relative permit-
tivity "a and "b and thickness da and db, respectively [see
the inset in Fig. 2(b)]. In [9], the parameters of the homo-
genized uniaxial medium [cf. (12)] were determined by
matching its dispersion law with the McLaurin expansion
of the exact Bloch-type dispersion law of the PC up to the
fourth order in the arguments. Such a nonlocal homogen-
ized model establishes a simple analytical connection with
the PC parameters and is therefore very useful in our
synthesis procedure. However, in our case, we developed
a modified version [similar to (12), but higher-order in kz],
in order to accurately capture the parameter variations over
the dynamical ranges involved (see [26] for details).

As a last step, we developed a semianalytical procedure
for determining the parameters of the PC approximant,
based on the matching between the above nonlocal homo-
genized model and the TO-based blueprints in (12) (see
[26] for details). For the example considered, the above
synthesis yields a PC with "a ¼ 2:752, da ¼ 0:0668�0,
"b ¼ �2:082, and db ¼ 0:0332�0 (with �0 ¼ 2�=k0 de-
noting the vacuum wavelength). Figure 2 compares the
corresponding exact (i.e., Bloch) EFCs and (nonlocal ho-
mogenized) constitutive parameters [dashed (red) curves]
with the TO-based blueprints. A satisfactory agreement is
observed, especially within neighborhoods of the pre-
scribed transmitted wave vectors kt1 and kt2 (marked
with crosses), which are directly relevant to the refraction
scenario of interest.

As an independent validation of the above synthesis
procedure, we carried out a finite-difference time-domain
simulation [29] involving a finite-size PC slab (see [26] for
details). Figure 3 shows a field map illustrating the splitting
of an incident wide-waisted Gaussian beam into two trans-
mitted beams with directions consistent with the prescribed
ones. It is worth pointing out that the positively refracted
beam arises from local effects and may be predicted by
standard effective-medium modeling. Conversely, as is
clearly visible in Fig. 3, the negatively refracted beam
originates from the excitation and coupling of surface-
plasmon polaritons propagating along the interfaces be-
tween the negative-permittivity and dielectric layers of the
PC and therefore constitutes an additional extraordinary
wave which can only be predicted by nonlocal modeling.

For this particular example, one may argue that a semi-
heuristic identification of the required artificial material
and a direct optimization of its structural parameters (so as
to approximate the desired EFCs) may have been as effec-
tive as the design based on the TO theory developed here.
However, in a more general application scenario, for which
a more complicated dispersion relation and a larger
number of structural parameters may be desired, a direct
optimization approach would require iterative numerical
full-wave solutions of source-free EM problems and may
therefore become computationally unaffordable. Con-
versely, the inverse process proposed here, while seem-
ingly more involved, does not require full-wave modeling
and may still be carried out in a computationally mild
semianalytical fashion as a parameter matching between
the TO-based blueprints and the nonlocal homogenized
model, similar to the above example.
In conclusion, we have introduced and validated a

spectral-domain-based TO framework which admits a
physically incisive and powerful geometrical interpretation
in terms of EFC deformation. Our approach crucially relies
on the availability of nonlocal homogenized models and
allows the systematic synthesis of spatially dispersive
transformation media capable of yielding prescribed non-
local field-transformation effects. Given the current re-
search trend in metamaterial homogenization, with a
variety of rigorous theories that allow the description of
the wave interaction in metamaterials in the spectral do-
main [30,31] and a correspondingly growing ‘‘library’’ of
nonlocal homogenized models, we expect that our ap-
proach may rapidly become an exciting option for spatial
dispersion engineering in the near future. Also of great
interest is the exploration of nonreciprocal effects, which
our approach can naturally handle via the use of non-
center-symmetric coordinate transformations.
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