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The nuclear shape correction to the g factor of a bound electron in the 1S state is calculated for a

number of nuclei in the range of charge numbers from Z ¼ 6 up to Z ¼ 92. The leading relativistic

deformation correction has been derived analytically, and also its influence on one-loop quantum

electrodynamic terms has been evaluated. We show the leading corrections to become significant for

mid-Z ions and for very heavy elements to even reach the 10�6 level.
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The ever-increasing precision of measurements and the-
ory of the g factor of a bound electron has recently deliv-
ered a new value for the electron mass [1,2] and keeps
providing stringent tests for quantum electrodynamics
(QED) in strong fields [1–3]. It also allows us to access
electromagnetic properties of nuclei such as charge radii,
as demonstrated in a very recent proof-of-principle study
with a Si13þ ion [3], or, as suggested theoretically, mag-
netic moments [4]. Also, it is anticipated that g factor
studies will yield a value for the fine-structure constant �
that is more accurate than the presently established one
when extending the experiments to elements with a high
charge number Z [5].

In a few years, measurements with the heaviest elements
will be possible [6]. As higher-order nuclear and QED
contributions to the theoretical value of the g factor are
strongly boosted with increasing Z, at the present 10�10

level of relative experimental accuracy [3,7] or even below,
our present understanding of atomic structure will not be
satisfactory. In such strong Coulomb fields, nuclear effects
beyond a simple spherical model arise. Furthermore, QED
and nuclear structural contributions are intertwined.

In this Letter, we consider the nuclear shape effect and
find that, while it can be safely neglected in predictions for
low-Z systems, it greatly influences the g factor value
already for mid-Z elements. At high nuclear charges, its
inclusion in the theoretical description is mandatory; for
example, for U91þ, its relative contribution to the total g
factor reaches the 10�6 level. We furthermore evaluate
mixed nuclear-QED terms, i.e., the nuclear shape effect
on the one-loop QED terms of self-energy (SE) and vac-
uum polarization (VP). Even these contributions will be
highly relevant for the interpretation of experimental val-
ues to be obtained within a few years [6]. Furthermore, a
comparison of theory and experiment may even yield more
accurate values for nuclear shape parameters, relevant in
explaining shape phase transitions in nuclear structure
theory [8].

We account for the nuclear quadrupole and hexadeca-
pole deformation and derive a formula describing the

nuclear shape correction to the g factor of a bound electron
in hydrogenlike ions in the 1S state. Then we focus on
systems where the nucleus is spinless and in its ground
state. Let us start with the definition of the electron g
factor [we use units with c ¼ 1, @ ¼ 1, � ¼ e2=ð4�Þ,
and e ¼ �jej unless otherwise stated]

�E ¼ � e

m
h ~s ~Big

2
; (1)

where �E stands for the energy correction due to the
coupling of the electron spin operator ~s to the external

magnetic field ~B, m is the mass of the electron, and h. . .i
stands for the expectation value. The nuclear deformation
(ND) correction to the g factor, which we present, is
closely related to the finite-size (FS) effect, which is well
known in the context of atomic levels. The correction
emerges when one accounts for a deviation of a nucleus
from the spherical shape.
Let us consider now a relativistic Hamiltonian of the

bound system of an electron and a nucleus in the presence
of an external, constant, and homogeneous magnetic field.
The interaction of the nucleus with the external magnetic
field is negligible, so that we can write

H ¼ Ha þHN þ �VC � e ~� ~A; (2)

where ~A ¼ 1
2 ð ~B� ~rÞ, Ha is the atomic Dirac-Coulomb

HamiltonianHa ¼ ~� ~pþ�m� Z�
r , ~r is the vector describ-

ing the electron’s position with respect to the mass center
of the system, HN is the (unknown) nuclear Hamiltonian,
and �VC is the deviation from the monopole term of the
exact Coulomb potential of our system, i.e.,

�VC ¼ Z�

r
�XZ

i¼1

�

j~r� ~rij ; (3)

where ~ri are the proton position vectors. Now we formulate
the framework for the perturbative calculation of the en-
ergy correction due to the presence of the magnetic field
and the deviation from the Coulomb potential. We start
with the equation
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ðHa þHN þ �VC � e ~� ~AÞj�i ¼ ðEð0Þ
a þ Eð0Þ

N þ �EÞj�i;
(4)

where j�i denotes the perturbed state of the system, Eð0Þ
a

the unperturbed ground-state energy of the atom, Eð0Þ
N the

unperturbed ground-state energy of the nucleus, and �E the
energy correction arising due to �VC and the interaction
with the external magnetic field. Next, we perform the
following approximation: We assume that the potential
�VC does not induce any nuclear transition, which means
that we neglect the nuclear polarizability (NP) effects.
However, the derivation of the NP correction as well as
its numerical values for a number of elements can be found
in Ref. [9]. In principle, there are also mixed terms con-
taining both the NP and nuclear deformation effects, but,
since these effects are both already small, we neglect the
mixed terms. Then we can write j�i ¼ j�0i � jc i, where
jc i stands for the ground state of the nucleus, j�0i denotes
the perturbed atomic state j�0i ¼ j�i þ j��i, and j��i
stands for the correction to the unperturbed atomic state
j�i. We substitute the state j�i into Eq. (4) and act on the
resulting equation with hc j. Following an obvious reduc-
tion, we obtain

½Ha þ �V̂ð~rÞ � e ~� ~A�j�0i ¼ ðEð0Þ
a þ �EÞj�0i; (5)

where �V̂ð ~rÞ � hc j�VCjc i.
Now we will express �V̂ð~rÞ in terms of a nuclear charge

distribution �ð ~rÞ. We do not focus on details here since the
detailed derivation of the formula (6) can be found in
Ref. [10]. If the nucleus is in the state of vanishing angular

momentum I ¼ 0, then the potential �V̂ð ~rÞ can be written
in terms of the simple formula

�V̂ðrÞ ¼ Z�

r
þ e

4�

Z
dr0r02

�ðr0Þ
r>

; (6)

where r> ¼ maxðr; r0Þ. In Eq. (6), we have introduced the
radial charge density, i.e., �ðrÞ ¼ R

d ~n�ð~rÞ. The terms on

the right-hand side of Eq. (6) correspond to the respective
terms on the right-hand side of Eq. (3). Let us note that the

resulting potential �V̂ðrÞ depends solely on the radial
variable r.

In our calculation, we consider axially symmetric nuclei
and employ the two-parameter Fermi charge distribution
with quadrupole and hexadecapole deformation, i.e.,

��ð ~rÞ ¼ N

1þ exp½ðr� c�Þ=a� ; (7)

where N is a normalization constant and the half-density
radius is given in terms of spherical harmonics as c� ¼
c0ð1þ �2Y20 þ �4Y40Þ, with �2 and �4 being the quad-
rupole and hexadecapole deformation parameters, respec-
tively. Our assumption of the absence of the octupole
deformation for nuclei considered in this work is based
on Ref. [11].

The g factor corrections of interest to us for the systems
described by Eq. (5) might be calculated with the help of
the results of Ref. [12]. We will use Eq. (27) of Ref. [12],
which for a 1S state reads

�gFS ¼ 4ð2�þ 1Þ
3

EFS

m
: (8)

This formula describes a correction to the g factor due to
the FS effect for arbitrary radial distributions of the nuclear
charge. EFS denotes the energy shift due to the FS effect

described by the perturbing scalar potential, and � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðZ�Þ2p

. Equation (8) takes into account the interac-
tion with the external magnetic field in the first order of

perturbation theory, whereas the interaction with �V̂ðrÞ is
treated to all orders. In practice, the accuracy of Eq. (8) is
limited by the accuracy of EFS. In order to obtain EFS, we
use Eq. (17) of Ref. [13]. Namely, for the 1S state

EFS ¼ ð�ZÞ2
10

½1þ ð�ZÞ2fð�ZÞ�ð2�ZRmÞ2�m; (9)

where fð�ZÞ ¼ 1:380� 0:162ð�ZÞ þ 1:162ð�ZÞ2 and R
is the effective radius of the homogeneously charged
sphere that gives the same energy correction as the original
nuclear shape. For states with j ¼ 1=2

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
hr2i

�
1� 3

4
ð�ZÞ2

�
3

25
hr4i=hr2i2 � 1

7

��s
; (10)

where hrni � R
drr2rn��ðrÞ=ðZjejÞ. In our calculation,

hr4i is computed by numerical integration, whereas hr2i
is found in the literature [14].
It might be instructive to obtain the approximate formula

expressing R in terms of the nuclear parameters. For this
purpose, we substitute relations (24)–(26) from Ref. [10]
into Eq. (10) and expand the result. In this way, we obtain

R ’ hr2i1=2
( ffiffiffi

5

3

s
� ðZ�Þ2

14�

� ffiffiffiffiffiffi
15

p
4

�2
2 þ

5
ffiffiffi
3

p

7�1=2
�3

2

þ 9
ffiffiffiffiffiffi
15

p

7�1=2
�2

2�4 þ
�
a

c0

�
2
 ffiffiffi

5

3

s
�2 � 147

ffiffiffi
5

p
�2

28
ffiffiffi
3

p �2
2

� 355�3=2

28
ffiffiffi
3

p �3
2 �

639
ffiffiffi
5

p
�3=2

28
ffiffiffi
3

p �2
2�4

���
: (11)

The values of R obtained with the help of numerical
integration are in good agreement with those obtained
with formula (11). Finally, the nuclear deformation correc-
tion to the g factor is defined as

�gND � �gFS

�
Z;

ffiffiffiffiffiffiffiffi
hr2i

q
; a; �2; �4

�

� �gFS

�
Z;

ffiffiffiffiffiffiffiffi
hr2i

q
; a; 0; 0

�
; (12)

where �gFS depends on the nuclear parameters via R.
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We also take into account nuclear deformation correc-
tions to the QED corrections. The QED corrections to the g
factor of first order in � consist of SE and VP corrections.
We mostly use the calculation scheme as in Refs. [15,16].
The SE term represents the sum of irreducible, reducible,
and vertex parts: �gSE ¼ �girr þ �gred þ �gver. The irre-
ducible part is given by [17]

�girr ¼ 1

m�

XEn�E�

n

h�j½�ðE�Þ � �0�m�jnihnj½ ~�� ~r�zj�i
E� � En

:

(13)

Here, m� is an angular momentum of the state j�i and En

the energy of state jni, ½ ~�� ~r�z describes the interaction
with the external magnetic field, and �m is a mass counter-
term. �ðEÞ denotes the unrenormalized self-energy opera-
tor defined as

haj�ðEÞjbi ¼ i

2�

Z
d!

X
n

hanjIð!Þjnbi
E�!� Enð1� i0Þ ; (14)

where Ið!; x1; x2Þ ¼ e2���	D�	ð!; x1; x2Þwith the Dirac
matrices �� ¼ ð1; ~�Þ and the photon propagator
D�	ð!; x1; x2Þ. The expressions for the reducible and ver-

tex parts read [17]

�gred ¼ 1

m�

h�j½ ~�� ~r�zj�ih�j d

dE
�ðEÞjE¼E�

j�i; (15)

�gver ¼ 1

m�

i

2�

Z
d!

X
n1;n2

� h�n2jIð!Þjn1�ihn1j½ ~�� ~r�zjn2i
½E��!�En1ð1� i0Þ�½E��!�En2ð1� i0Þ� :

(16)

Both the reducible and vertex parts are ultraviolet-
divergent, whereas the sum �gvr ¼ �gred þ �gver is finite.
To separate the ultraviolet divergencies, the expression
(13) is decomposed into zero-, one-, and many-potential
terms, and the expression (15) is decomposed into zero-
and many-potential terms. All zero- and one-potential
terms are evaluated in momentum space. The remaining

many-potential parts �gð2þÞ
irr and �gð1þÞ

vr are calculated in

coordinate space [18]. The angular integration and the
summation over intermediate angular projections in the

many-potential terms �gð2þÞ
irr and �gð1þÞ

vr are carried out in

a standard algebraic manner. The many-potential terms
involve infinite summation over the relativistic quantum
number 
 ¼ �ðjþ 1=2Þ. This summation is terminated at
a maximum value j
j ¼ 15� 20, and the residual part of
the sum is evaluated by a least-square inverse-polynomial
fitting. The summation over the Dirac spectrum at fixed
intermediate 
 was carried out with the dual-kinetic-
balance method [19].

The VP correction consists of two parts, originating
from the vacuum-polarization diagram with the magnetic

interaction inserted into the external electron line (the
electric-loop contribution �geVP) and into the vacuum-
polarization loop (the magnetic-loop contribution �gmVP).
We took into account only the leading term, since it guar-
antees the accuracy needed in the present work. The leading
term originates from the electric loop and can be described
by the Uehling potential. TheVP correction is calculated by
using the dual-kinetic-balance method as well.
To calculate the nuclear deformation correction to QED

corrections (QED-ND), we employed an effective radius
for the nucleus via Eq. (10). We employed the shell,
homogeneously charged sphere and Fermi nuclear distri-
butions. Although the QED-ND-calculation results are
numerically stable and do not depend on the nuclear
model, they should be considered as an estimate.
Table I presents numerical values of �gND obtained with

formula (12) for various hydrogenlike ions. Depending on
the availability of experimental data, the quadrupole de-
formation parameter �2 was either taken from the litera-
ture or estimated with the help of the formula [24]

�2 ¼ 4�

3ZjejR2
s

�X
i

BðE2; 0þ ! 2þi Þ
�
1=2

; (17)

where BðE2; 0þ ! 2þi Þ stands for the reduced probability
of the E2 transition from the ground state 0þ to a state 2þi ,

TABLE I. The nuclear deformation correction to the g factor
(�gND). The values of hr2i1=2 and their uncertainties originate
from Ref. [14]. Unless otherwise stated, the value of a was
obtained by the equation a ¼ t=ð4 log3Þ (Ref. [20]), where t ¼
2:30 fm and rather conservative error bars were assumed. The
parameters �2 were estimated with the help of formula (17)
unless a reference is given. For 234U and 238U, we employed, in
accordance with Ref. [21], �4 ¼ 0:08ð5Þ and �4 ¼ 0:07ð5Þ,
respectively; for 28Si, in accordance with Ref. [22], �4 ¼
0:08ð5Þ, and the same value for 30Si; for other elements, we
assumed �4 ¼ 0:0ð1Þ in accordance with Ref. [11]. The values of
c0 are set by the requirement that the numerically computed
hr2i1=2 should be equal to the established ones [14]. See also the
comments in the text on the uncertainty of �gND.

Z Isotope a (fm) �2 �gND

6 12C 0.523(40) 0.44(10) �7:9ð5:3Þ � 10�16

14 28Si 0.523(20) �0:349ð20Þc �2:85ð52Þ � 10�13

30Si 0.523(20) �0:314ð20Þc �2:48ð49Þ � 10�13

38 86Sr 0.523(20) 0.134(10) �9:0ð3:1Þ � 10�11

100Sr 0.523(20) 0.435(11) �1:08ð28Þ � 10�9

60 142Nd 0.523(20) 0.100(20) �2:0ð1:1Þ � 10�9

150Nd 0.523(20) 0.278(20)a �1:70ð53Þ � 10�8

62 144Sm 0.523(20) 0.090(20)a �2:1ð1:2Þ � 10�9

154Sm 0.498(20)a 0.328(20)a �3:24ð98Þ � 10�8

92 234U 0.509(20)b 0.256(10) �1:12ð27Þ � 10�6

238U 0.505(20)b 0.280(10) �1:28ð28Þ � 10�6

aRef. [23].
bRef. [21].
cThe sign originates from Ref. [22].
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Rs is the effective radius evaluated with the help of the

simplified formula Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið5=3Þhr2ip

, and the values of
BðE2; 0þ ! 2þi Þ were evaluated with the help of the data
from Ref. [25]. The uncertainty of �gND is estimated as the
quadratic sum of uncertainties related to the nuclear pa-
rameters. We assume rather conservative error bars for the
parameters a, �2, and �4 to account for an uncertainty
caused by the fact that for some nuclei the parameters were
compiled from various experimental results.

As for the QED-ND effect, it is significantly smaller
than the leading ND correction. For example, we obtained
the following values: 5ð3Þ � 10�9, 4ð2Þ � 10�9, 1:2ð4Þ �
10�10, 1:3ð1:1Þ � 10�11, 1:5ð3Þ � 10�11, and 1:6ð6Þ�
10�12 for 238U, 234U, 150Nd, 142Nd, 100Sr, and 86Sr, respec-
tively. The accuracy of the results for the ND and QED-ND
corrections is such that the comparison with the experi-
mental values of the g factor could serve as a method for
the determination of �2 and �4 for heavy nuclei, provided
that all other relevant corrections, i.e., the currently un-
known higher-order QED corrections, the FS and mixed
FS-QED effects, and the NP effect, as well as remaining
nuclear parameters are known with sufficient accuracy.

Table II contains the values of the isotopic shift of �gND
for various chosen isotopes. For a comparison with
experimental results, values of other isotope-dependent

effects are required. The leading FS effect as well as the
mixed FS-VP effect can be found in Ref. [20], the mixed
FS-SE correction in Ref. [26], the recoil effects in
Refs. [27–29], and the NP effect in Ref. [9].
For comparison, Fig. 1 presents a plot of �gND and some

other contributions to the g factor. It is apparent that �gND
grows quickly with Z and that it becomes prominent for
heavy ions.
In summary, we have developed the theory of the nu-

clear deformation correction to the bound electron g factor
and calculated this term for a wide range of elements. It
turns out that already for 100Sr37þ, the relative nuclear
shape contribution exceeds 10�10, which is the level that
has just been reached in experiment [3]. For high-Z ele-
ments, the correction becomes large, e.g., on the level of
10�6 for 238U91þ, and definitely will be important for the
comparison between theory and experiment for high-Z
elements, which are expected within a few years [6].
These results are likely to allow in future for the extraction
of nuclear deformation parameters from experimental val-
ues of the g factor.
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