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I investigate an SU(3) gauge model with 12 fundamental fermions. The physically interesting region of

this strongly coupled system can be influenced by an ultraviolet fixed point due to lattice artifacts. I

suggest to use a gauge action with an additional negative adjoint plaquette term that lessens this problem. I

also introduce a new analysis method for the 2-lattice matching Monte Carlo renormalization group

technique that significantly reduces finite volume effects. The combination of these two improvements

allows me to measure the bare step scaling function in a region of the gauge coupling where it is clearly

negative, indicating a positive renormalization group � function and infrared conformality.
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Gauge models with many fermions or fermions in higher
representations can develop a conformal phase character-
ized by the emergence of an infrared fixed point (IRFP) in
the gauge coupling. Both the conformal systems and those
that are still chirally broken but are very near to the
conformal window could be relevant for physics beyond
the standard model. During the last few years many of
these models were studied using various lattice simulation
techniques [1–12]. The theory with SU(3) gauge fields and
12 flavors of fundamental fermions has been the subject of
extensive investigations, but its infrared behavior is still
controversial. References [1,4] used the Schrödinger func-
tional approach to numerically calculate the renormaliza-
tion group � function and concluded that the theory has an
IRFP; i.e., it is conformal. Reference [7] considered the
system at finite temperature and reached similar conclu-
sions. Both of these works used unimproved or only mod-
erately improved actions at strong gauge couplings where
lattice artifacts could seriously effect the results. At the
same time studies of spectral quantities appeared to be
more consistent with a chirally broken system [3,5].
Early studies using Monte Carlo renormalization group
(MCRG) techniques were not able to push deep enough
into the strong coupling and remained inconclusive [6,8].
Recently a large scale study [12] concluded that high
precision data of spectral quantities prefer the chirally
broken interpretation, but other groups interpret the
same data as more compatible with the conformal
behavior [13,14].

In this work I revisit the 12 flavor SU(3) system using
MCRG methods. Because of two improvements, one in the
lattice action, the other in analyzing the MCRG data, I am
able to cover a wider coupling range and can demonstrate
that in the investigated region the renormalization group �
function (actually its lattice analogue, the bare step scaling
function) has the opposite sign of an asymptotically free
theory, signaling the existence of an infrared fixed point
and the conformality of the system.

The basic observation that led to the modified action is
the existence of an ultraviolet fixed point due to strong
coupling lattice artifacts. It is well known that the pure
gauge SUðNcÞ theory both with Nc ¼ 2 and 3 exhibits a
first order phase transition in the fundamental-adjoint
plaquette gauge action space [15,16]. This line ends in a
second order point that has a (most likely trivial) ultraviolet
fixed point (UVFP). For notational convenience I call this
new fixed point UVFP-2, while I use G-FP to refer to the
perturbative Gaussian fixed point at zero gauge coupling.
While the first order phase transition and the UVFP-2 are
lattice artifacts and independent of the G-FP and the con-
tinuum limit defined there, their existence can strongly
influence, even completely change, the scaling behavior
of the lattice model.
Reference [17] studied the scaling of several observables

of the SU(3) fundamental-adjoint pure gauge system with
adjoint coupling �A ¼ 0, �2:0 and �4:0, far away from
the end point of the first order line that occurs around�A �
2:0. Nevertheless the data showed very large scaling vio-
lations, even lack of scaling, at couplings near the exten-
sion of the first order phase transition line. As expected, the
scaling violations decrease with negative adjoint terms in
the action, i.e., farther from the second order end point.
References [18,19] studied the renormalization group (RG)
flow lines in the pure gauge SU(2) system. They found that
near the extension of the first order phase transition line
along the fundamental plaquette action, the RG flows away
from the UVFP-2 and turns around sharply at negative
adjoint coupling. This again indicates that in this region
the system is strongly influenced by the fixed point (FP)
associated with the second order phase transition. In a
recent work [20] we studied the pure gauge fundamental-
adjoint SU(2) system with the 2-lattice matching MCRG
method. Our results show that near the first order line and
its extension towards negative adjoint couplings the
MCRG matching method breaks down, the system is no
longer in the basin of attraction of the perturbative G-FP.
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When two UVFPs exist, numerical simulations have to
stay in the vicinity of either one of them to describe the
corresponding continuum physics. Fortunately the basin of
attraction of the UVFP-2 is at fairly strong coupling, and
present day QCD lattice simulations are sufficiently far
from it. This, however, might not be the case in many
fermion systems where interesting physics is expected to
occur at strong gauge coupling.

A large number of fermions could change the phase
structure of the pure gauge system, so I started by the study
of the phase diagram of the fundamental-adjoint plaquette
gauge action with 12 fermions. I used nHYP smeared
staggered fermions [21] and measured the plaquette, the
specific heat through the derivative of the plaquette, the
Polyakov line, and the chiral susceptibility on 83 � 4, 84,
123 � 4, and 123 � 6 lattices. The specific heat gave a very
clear signal for a first order transition, continuing along a
crossover line, as indicated by the solid and dashed red lines
in Fig. 1. This phase transition or crossover has no depen-
dence on the temporal lattice size, it is a bulk feature of the
system. In the crossover region the chiral susceptibility
gives no signal. The phase diagram of the 12 flavor system
looks very similar to the pure gauge one. There is a first
order line ending at a second order fixed point around
(�F � 2:4, �A � 3:6). At smaller �A there is a crossover
that gets weakerwith decreasing adjoint coupling. By�A ¼
�1:4 (the last point along the dashed red line) there is only a
very weak signal left. I should note that I did not determine
the phase transition with high precision—my goal was to
establish the qualitative features of the phase diagram.

The horizontal blue (dark gray) line at �A ¼ 0 in Fig. 1
shows the region I studied in Ref. [8]. MCRG matching
became impossible at stronger couplings, to the left of the
blue (dark gray) line. In retrospect that was most likely due
to the nearby crossover region. It is useful to recall that the
leading order perturbative relation between the gauge cou-
pling and the lattice couplings is

2Nc

g2
¼ �F

�
1þ 2

�A

�F

�
: (1)

This suggests that the coupling ð�F;�AÞ ¼ ð5:0; 0:0Þ
corresponds, at least perturbatively, to ð�F;�AÞ ¼
ð10:0;�2:5Þ. The latter point is quite far from the crossover
along the �A=�F ¼ �0:25 action line, indicated by the
second blue (dark gray) line in Fig. 1. Finally, the green
(light gray) line in the figure corresponds to �A=�F ¼
�0:50, the limit where the adjoint plaquette overtakes
the fundamental one and flips the system into a new
universality class.
If the basin of attraction of the perturbative G-FP is

limited by the first order or crossover line, and Eq. (1) is
any indication of constant physics, than along the
�A=�F ¼ �0:25 line one could reach considerably
stronger couplings than with the �A ¼ 0 fundamental ac-
tion while still describing the physics of the G-FP. I have
chosen this action for the investigation described in this
Letter. This is a rather arbitrary choice, and other ratios
could work equally well or even better.
The 2-lattice matching MCRGmethod is a powerful tool

to numerically calculate the bare step scaling function, the
discretized lattice analogue of the RG � function. The
method has been used for many years and recently it has
been discussed in detail in Refs. [6,8]. Here I describe only
a previously neglected finite volume correction.
I define the bare step scaling function sbð�Þ ¼ �� �0,

where� and�0 are gauge couplings with lattice correlation
lengths related as �ð�Þ ¼ 2�ð�0Þ. The step scaling func-
tion approaches a constant at the G-FP, vanishes at other
fixed points (both UVand IR), and has the opposite sign of
the RG � function where it is nonzero.
The 2-lattice matching MCRG method relies on match-

ing observables after several RG blocking steps. Its advan-
tage is that the simulations do not have to be performed on
volumes with lattice size comparable or larger than the
correlation length, and most of the finite size effects can be
cancelled by comparing blocked observables measured on
identical blocked volumes.
There are two steps to find the matching pairs (�, �0):
(I) Matching: Observables measured on nb times

blocked configurations generated at � have to match ob-
servables measured on nb � 1 times blocked configura-
tions generated at �0. To minimize finite size effects the
simulations are done on twice as large lattices at � than at
�0 so the final measurements are performed on the same
blocked volume. The shift in the gauge coupling is defined
as ��Oð�; nb; LbÞ ¼ �� �0 if

hOð�; nb; LbÞi ¼ hOð�0; nb � 1; LbÞi; (2)

where hOi denotes the expectation value of some short
distance operator and Lb is the volume after nb and nb � 1
blocking steps [the same for both sides of Eq. (2)].
(II) Optimization: The quantity �� defined in the pre-

vious step can differ significantly from the step scaling

FIG. 1 (color online). The approximate location of the phase
transition or crossover in the fundamental-adjoint plane. The
solid red (dark gray) line indicates first order phase transition
while the dashed red line corresponds to crossovers.
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function sb if the RG flow does not reach the RT in nb � 1
steps. Most RG block transformations have a free parame-
ter, usually denoted by �, that can be optimized to mini-
mize the number of RG steps needed to reach the RT. The
optimized value is defined as the one where consecutive
blocking steps predict the same shift,

��Oð�;nb; Lb; �optÞ ¼ ��Oð�; nb � 1; Lb; �optÞ: (3)

To minimize finite size effects, ��O on the two sides of
Eq. (3) should be calculated on the same blocked lattice size
Lb. Previous studies did not take this volume dependence
into account and usually satisfied Eq. (3) on different vol-
umes. The error introduced this way is much smaller than
the one introduced by not matching the volume in Eq. (2),
but still it can be important when ��O itself is small.

Equation (3) requires the comparison of simulations on
three different volumes. It is easiest to illustrate this with a
specific example. Let us assume we simulate on 324 vol-
umes at some � value. After blocking the lattices nb ¼ 3
times we measure observables on Lb ¼ 4 lattices. We
match these to observables measured on nb ¼ 2 times
blocked lattices at some �0 coupling and find
��Oð�; nb ¼ 3; Lb ¼ 4Þ ¼ �� �0. Since Lb ¼ 4, simu-
lations at �0 must have been done on 164 lattices.
Optimization requires that

��Oð�; nb ¼ 3; Lb ¼ 4Þ ¼ ��Oð�;nb ¼ 2; Lb ¼ 4Þ:
To calculate the quantity on the right-hand side we have to
do simulations on 164 and 84 volumes at � and �0.
Identifying the optimal RG transformation and corre-
sponding ��O with nb ¼ 3=2=1 blocking steps requires
simulations on volumes 324, 164 and 84. The procedure can
be repeated with different O operators and the standard
deviation between the predicted ��O values characterizes
the systematical errors of the matching. Results on larger
volumes with more blocking levels provide further consis-
tency checks.

The rest of this Letter illustrates the optimization or
finite size correction process and shows the step scaling
function for a range of gauge couplings. The simulations
were done on volumes between 324 and 44 using Nf ¼ 12

nHYP smeared staggered fermions. The gauge action is a
combination of fundamental and adjoint plaquette terms
with fixed �A=�F ¼ �0:25 ratio. The lattice fermion
masses were am ¼ 0:0025 on the 324, 0.005 on the 164

and 244, 0.01 on the 124 and 84 and 0.02 on 64 and 44

volumes. The masses were chosen such that their values
match if they scale with their engineering dimension. This
is not the right scaling if the anomalous mass happens to be
large. However, these bare fermion mass values are so
small that the data show no mass dependence even with
masses twice as large as used here. For all practical pur-
poses these mass values can be considered to be in the
chiral limit. I used an RG block transformation based on 2
HYP smearing steps with fixed inner parameters and con-
sidered 5 different operators as described in Ref. [8]

Figure 2 illustrates the optimization at �F ¼ 6:5. The
left side of the figure shows the optimal �� after nb ¼
3=2=1 blocking steps and final blocked lattices of Lb ¼ 2,
3 and 4. The red circles show the results of the optimized
matching, a consistent value between all three volume
series. The blue diamonds show the predicted �� without
finite volume correction in the optimization. The result on
the smallest volume set is clearly off, signaling large finite
volume effects. The two larger volumes show very little
deviation, it appears that at least with my blocking trans-
formations and 5 operators a final volume of Lb ¼ 3 is
already sufficient to minimize these second order finite
volume effects. The right side of the figure shows �� after
one more blocking step, with nb ¼ 4=3=2. The largest
volume in this case was 324 with the final blocked volume
Lb ¼ 2. Again, the finite volume corrected optimized data
are significantly different from the uncorrected data but
both are consistent with the Lb ¼ 2 results of the left-hand
side. The error bars on the data points come from a
combination of statistical and systematical errors. They
are dominated by systematical errors in the nb ¼ 3=2=1
sequence and by statistical errors in the nb ¼ 4=3=2 one.
Comparing the finite volume corrected optimized results
for �� on all three volume sequences and after nb ¼
3=2=1 and nb ¼ 4=3=2 blocking levels one finds sbð� ¼
6:5Þ ¼ �0:15ð2Þ.
Figure 3 show �� (or sb) at a range of gauge couplings.

The red diamond points are from 16 ! 8 ! 4,
nb ¼ 3=2=1, the blue crosses are from 32 ! 16 ! 8, nb ¼
3=2=1, and the black circles are from 32 ! 16 ! 8, nb ¼
4=3=2 optimized matching. Where all three data points are
available, they are consistent. Overall, the data show that sb
is negative in the investigated region, indicating that the
RG � function has crossed zero and the measurements are
on the strong coupling side of the IRFP. One should note

FIG. 2 (color online). The optimized �� at �F ¼ 6:5 with the
action �A=�F ¼ �0:25. The red circles are the finite volume
corrected predictions, the blue diamonds have no finite volume
correction in the optimization step. The left side of the figure
shows results after comparing blocking steps nb ¼ 3=2=1 on
different volumes, while the right side is the result after one more
blocking step. The data points are labeled by the final blocked
lattice size Lb.
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that the data in Fig. 3 does not correspond to any given RG
transformation. Each point has a slightly different optimi-
zation parameter and can have a different IRFP as well.

In summary, Fig. 3 gives strong evidence that the 12
fermion SU(3) system is infrared conformal. This is not the
first MCRG investigation of this theory, but previous ones
were inconclusive. The success this time had two sources. I
considered an action farther away from a secondary UVFP
caused by strong coupling lattice artifacts and that made
simulations possible at physically stronger gauge cou-
plings. Second I corrected for a previously ignored finite
volume effect that made the results obtained on different
volumes after different blocking levels consistent. This
finite volume correction also reduced the systematical
errors that come from matching 5 different operators.
The same approach could easily be applied to other models
near the conformal window.

The MCRG analysis assumes that the mass is the only
relevant operator at the IRFP if it exists. A new relevant
operator would most likely make matching impossible but
there is no sign of that happening, the numerical data are
consistent with a fixed point at finite gauge coupling with
only one relevant operator. MCRG can be used to study the
mass anomalous dimension at this FP but since the FP
occurs at a fairly weak coupling, I do not expect a large
anomalous dimension.

It is still an open question of why the result of the MCRG
study differs from the conclusion based on the study of
spectral quantities [12]. The fact that Refs. [13,14] reach
the opposite conclusion using the data published in
Ref. [12] indicates that it is difficult to distinguish the
conformal and confining, chirally broken phases based on
the scaling of spectral quantities. Finite volume effects can
be large at small fermionmasses in a chirally broken system
while in a conformal one the finite volume and finite mass
effects both introduce a scale that has to be disentangled.
The existence of the UVFP in the strong coupling discussed
in the present work can also influence the spectral results as
the calculations of Ref. [12] were performed on the strong

coupling side of the crossover region. To resolve the ob-
served discrepancies between the different approaches a
scaling study in the gauge coupling would be essential.
Finite temperature investigations would also contribute to
the understanding of the Nf ¼ 12 flavor system. Some of

these issues were considered in a paper that appeared after
the completion of this manuscript. Reference [22] studied
the strong coupling regime of theNf ¼ 12 flavormodel and

found indication for bulk phase transitions and established
the existence of a new novel phase. The interpretation of
Ref. [22] is consistent with a conformal phase.
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FIG. 3 (color online). The bare step scaling function. The
different symbols correspond to predictions from optimized
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