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Weakly chaotic nonlinear maps with marginal fixed points have an infinite invariant measure. Time

averages of integrable and nonintegrable observables remain random even in the long time limit. Temporal

averages of integrable observables are described by the Aaronson-Darling-Kac theorem. We find the

distribution of time averages of nonintegrable observables, for example, the time average position of the

particle, �x. We show how this distribution is related to the infinite invariant density. We establish four

identities between amplitude ratios controlling the statistics of the problem.
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Low dimensional chaotic systems by definition have
positive Lyapunov exponents and have been extensively
used to test basic assumptions of statistical physics.
Weakly chaotic systems have zero Lyapunov exponents,
namely, the separation of trajectories is subexponential,
though the deterministic motion remains quasirandom. In
many cases discrete maps are used to model the dynamics,
since they help to establish a deep understanding of the
fundamental issues without being too complicated (impor-
tantly numerics converge faster than in more realistic
models). In particular Pomeau-Manneville [1] maps are
weakly chaotic [2] and are characterized by marginal in-
stability. These maps were used to model intermittency [1],
anomalous diffusion [3–6] and aging [7]. Such systems are
described by an infinite invariant density (1D) [8,9]: a
non-normalizable density defined below. It is also well
known that temporal averages in such systems are not
equal to a corresponding ensemble average, instead time
averages remain random variables even in the long mea-
surement time limit [8,10–13]. Since chaos is a precondi-
tion for statistical physics, it is not very surprising that
weak chaos implies the breakdown of standard ergodic
theory.

For an ergodic process, in the long time limit the time
average of an observable is equal to the corresponding
ensemble average. The ensemble average and hence the
time average are obtained from the normalized invariant
density, if it exists. A fundamental extension of standard
ergodic theory is to find the distribution of time averages of
generic observables for weakly chaotic systems where the
underlying invariant density is non-normalizable. The
Aaronson-Darling-Kac (ADK) theorem [8] gives a partial
answer to this problem. Briefly, an observable whose av-
erage with respect to the 1D is finite, the distribution of
properly scaled temporal averages is the Mittag-Leffler
distribution. The 1D is essential for the description of
these fluctuations. For example, the separation of trajecto-
ries is described by a stretched exponential (a manifesta-
tion of weak chaos) and the distribution of separation rates
is provided by the ADK theorem [14,15].

In this Letter, we consider the very large class of non-
integrable observables. We focus on the position of a
particle xt in an interval (0, L) and obtain the distribution
of its time average. Importantly, we show how the distri-
bution of time averages of nonintegrable observables is
related to the underlying 1D. Previously, Thaler and
Zweimüller [10,11] considered an important nonintegrable
observable: the occupation fraction; i.e., the fraction of
time the particle spends within a given domain. They
rigorously showed it is described by the Lamperti distri-
bution (see details below). We provide a very general
conjecture for the distribution of time averages of non-
integrable observables, without giving a rigorous proof but
rather relying on simple arguments. Further, we derive the
identity of four amplitude ratios which govern the statistics
of the problem. These identities bridge between the
stochastic and dynamical theories in this field.
Model and observable.—We consider measure preserv-

ing maps xtþ1 ¼ MðxtÞ with xt 2 ð�1=2; L� 1=2Þ. Our
observable is xt and our goal is to calculate the distribution
of its time average �x ¼ P

t�1
t¼0 xt=t, in the limit of long time.

We assume that the map has N indifferent fixed points
(IFPs) located on fxð1Þ; . . . ; xðjÞ; . . . ; xðNÞg such that

MðxÞ � xþ 21=�ajjx� xðjÞj1þ1=� as x ! xðjÞ and aj �

0 (IFPs are also called marginal fixed points).
Throughout this work, j is a label of the IFPs. Here we
consider 0<�< 1 since in that regime the distribution of
�x is nontrivial. An example map is shown in Fig. 1. We
consider maps where the trajectory of the particle visits the
vicinity of all the IFPs; i.e., we exclude stable points or a
decomposable phase space, so the transformation has an
infinite invariant measure. Such maps exhibit non-
Gaussian intermittency and hence have attracted vast re-
search using various methods such as CTRW [3–5] and
periodic orbit theory [6].
Power-law sojourn times are related to the injection

probability.—Let us consider the IFP xð1Þ which we des-
ignate to be on the origin xð1Þ ¼ 0. In the vicinity of this

point the map is xtþ1 ’ xt þ 21=�a1ðxtÞ1=�þ1 for xt > 0 and
0<�< 1 while a1 > 0 (other IFPs have constants aj).
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Starting on x0 the time � it takes the particle to reach a
threshold xc is determined by the continuous approxima-

tion of the map dx=dt ’ 21=�a1ðxÞ1=�þ1. Following Geisel
and co-workers [3] this gives

� ¼ �
ðx0Þ�1=� � ðxcÞ�1=�

21=�a1
: (1)

During the evolution the particle is injected in the vicinity
of the IFP many times and hence x0 is treated as a random
variable whose probability density function (PDF) is
Pin½x0�. It follows that the waiting time �, the time the
particle remains in the vicinity of the j ¼ 1 IFP, is a
random variable with the PDF c 1ð�Þ ¼ Pin½x0�jdx0=d�j.
In the limit �21=�a1=� � ðxcÞ�1=� the Jacobian

jdx0=d�j � 2�1ja1j���1þ���ð1þ�Þ is independent of xc;
hence, this threshold does not control our asymptotic find-
ings. A similar formula holds for the jth IFP. Using Eq. (1)
one finds the PDF of waiting times [3]

c jð�Þ � Aj�
�ð1þ�Þ with Aj ¼ Pin½xðjÞ� �

1þ�

2jajj� : (2)

Here it is assumed that the injection PDF Pin½xðjÞ� is
smooth in the vicinity of the IFP. Equation (2) is well
known but actually rather formal since it expresses c jð�Þ
in terms of the unknown injection PDF. Below we will
relate the injection PDF with the1D. The power-law PDF
Eq. (2) indicates a diverging average sojourn time since
0<�< 1. The corresponding stochastic picture [3,5] is of
a particle jumping between neighborhoods of the IFPs
fxð1Þ � � � xðNÞg with power-law sojourn times for the
trapping events.

The infinite invariant density.—Plays a crucial role and it
is defined as [16]

��ðxÞ ’ �ðx; tÞ=t��1; t ! 1 (3)

where �ðx; tÞ is the density of particles [in simulations we
use uniformly spread initial conditions in (0, L)]. When
�< 1, the invariant density is non-normalizable,R
L
0 ��ðxÞdx ¼ 1, and hence its name. Such 1Ds are not

common in physics though recently an application was
suggested in the context of cooling in optical lattices
[17]. Note that the density �ðx; tÞ is, as usual, normalizable
for any finite t since the maps conserve the number of
particles. In the vicinity of the IFP xðjÞ one finds the
nonintegrable behavior

��ðxÞ ’ bjjx� xðjÞj�1=�; (4)

where bj � 0 is an amplitude which is generally unknown.

An example 1D is shown in Fig. 1 based on a numerical
simulation which allows us to estimate the bjs.

To understand better such a behavior we use simple
arguments. Note that the density normalized to unity is

�ðx; tÞdx ’ tx;xþdx=t; (5)

where tx;xþdx is the time the particle spends in (x, xþ dx)
[18]. Let us consider the vicinity of the first IFP xð1Þ ¼ 0.
The time tx;xþdx is proportional to NR: the number of

injections to the vicinity of the IFPs, multiplied by
Pin½xð1Þ�dx [which gives the number of visits in the inter-
val (x, xþ dx)]. tx;xþdx is also proportional to the time the

particle stays in (x, xþ dx) during each visit, which we
call �t. Thus, close to the IFP,

�ðx; tÞ ’ NRP
in½xð1Þ��t
t

: (6)

As is well known from renewal theory [3,5] the number of
renewals or injections scales like NR ’ Ct�. The prefactor
C can be roughly estimated however below we show that
it is an irrelevant parameter. Using Eq. (1) we have
when x ! 0

�t ’ �x�1=�

21=�a1
; (7)

so that the closer the particle is to the IFP xð1Þ ¼ 0 the
longer is �t. Similarly, we analyze other IFPs. Putting
these pieces of information together, we find

�ðx; tÞ ’ bj
jx� xðjÞj�1=�

t1��
; where bj ¼ C�Pin½xðjÞ�

21=�aj
:

(8)

Equation (8) shows, a relation between the amplitudes of
the 1Ds; i.e., the bjs and the injection probabilities

Pin½xðjÞ� [19].
The time average �x.—is now considered. During the

evolution the trajectory of the particle xt spends long times,
of the order of the measurement time in the vicinity of the
IFPs. In contrast the time it takes the particle to jump

FIG. 1 (color online). (a) The map Eq. (19) with L ¼ 3 and
� ¼ 3=4 has IFPs on 0, 1, 2. (b) The 1D exhibits nonintegrable
divergence on the IFPs (parameters are given in third example in
the text).
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between one IFP state to another is short and can be
neglected. Hence along a trajectory xt attains observable
values which are (nearly) equal to the locations of the IFP
fxð1Þ � � � xðNÞg. In each one of these states the particle
remains a time tj with j ¼ 1; � � � ; N which is the occupa-

tion time of state j. It follows that the time average is

�x ’
P

N
j¼1 xðjÞtj

t
: (9)

Each tj is a sum of many independent identically distrib-

uted random sojourn times drawn from the long tailed PDF
c jð�Þ, Eq. (2). Hence, the occupation time tj is distributed

according to Lévy statistics;, i.e., the generalized central
limit theorem holds. More precisely tj is a stable random

variable whose PDF is the one sided Lévy function with
index 0<�< 1. Let p

eq
j ¼ htji=t be the averaged occu-

pation fraction treated rigorously in [10,11], which is
nothing but the probability that a member of an ensemble
of noninteracting particles is in the vicinity of the IFP j.
Since the occupation time tj scale with Aj and t ¼ P

N
j¼1 tj

we get

peq
j ¼ AjP

N
j¼1 Aj

; (10)

where Aj is the amplitude of the waiting time PDF, defined

in Eq. (2). Importantly, using Eqs. (2) and (10),

p
eq
j ¼ Pin½xðjÞ�jajj��

P
N
j¼1 P

in½xðjÞ�jajj��
; (11)

which relates occupation fractions with injection probabil-
ities. Using Eqs. (8) and (11)

p
eq
j ¼ bjjajj��þ1

P
N
j¼1 bjjajj��þ1

; (12)

which relates the occupation fractions and the 1D.
The distribution of observables like �x was recently

studied within the continuous time random walk model, a
stochastic approach extensively applied, though so far
without an underlying 1D. Briefly, as mentioned, tj is a

stable random variable, and since �x [Eq. (9)] is a linear
combination of such independent random variables, one
finds the PDF of the time average [20]

f�ð �xÞ ¼ � 1

�
lim
�!0

Im

PN
j¼1 p

eq
j j �x� xðjÞ þ i�j��1

PN
j¼1 p

eq
j j �x� xðjÞ þ i�j� ; (13)

where i ¼ ffiffiffiffiffiffiffi�1
p

and Im denotes the imaginary part. We see
that the PDF of �x is controlled by the nonlinearity of the
map in the vicinity of the IFPs, i.e. �, the values of the
observable on these points fxðjÞg, the equilibrium
probabilities p

eq
j which in turn depend on either the 1D,

Eq. (12), or the injection PDF, Eq. (11). Thus once the
invariant density is known one may obtain full information

on the fluctuations of the time average of our observable.
The exponent � in Eq. (13) is the same as that describing
the marginal fixed point Eq. (1) provided that at or after
bifurcation the system does not admit other stable points,
periodic cycles, or turns decomposable, so that the system
has an infinite density (see [8,10,11] for mathematical
conditions). Notice that when � ! 1, Eq. (13) yields
lim�!1f�ð �xÞ � �ð �x� hxiÞ where hxi ¼ P

p
eq
j xðjÞ is the

ensemble average. For a general nonintegrable observable

OðxtÞ, the distribution of the time average �O ¼P
t�1
t¼0 OðxtÞ=t is f�ð �OÞ as in Eq. (13) where on the right

hand side we replace xðjÞ with OðxðjÞÞ.
A first illustration.—will be a system with two IFPs. We

consider xt 2 ð0; 1Þ and

MðxtÞ ¼

8>>><
>>>:

xt þ 21=�ðxtÞ1þ1=� 0< xt < 1=5

1þ 1=5�xt
7=20 1=5< xt < 11=20

xt � 21=�ð1� xtÞ1þ1=� 11=20< xt < 1;

(14)

hence xð1Þ ¼ 0 and xð2Þ ¼ 1 are the IFPs of the map and
ja1j ¼ ja2j. We first concentrate on the injection PDF
Pin½x�. We partition the map into two parts with a boundary
on 0< xc < 1. Following a trajectory we record events
where the particle jumps over the boundary, either from
left to right or vice versa. Each time the particle is injected
into one of the domains x < xc or x > xc we record its
landing position and thus generate a histogram which gives
Pin½x�. Not surprisingly, Pin½x�will depend on the choice of
xc. However, interestingly, the ratio P

in½xð1Þ�=Pin½xð2Þ� is a
constant independent of the value of xc. To understand this
behavior note that according to Eq. (8) we get the ampli-
tude ratio relation

b2=b1 ¼ Pin½xð2Þ�=Pin½xð1Þ� (15)

and since b2=b1 is clearly xc independent so is the right
hand side of this equation. Starting with a uniform density
we evolve the system until time 104, obtain an estimate for
the 1D ��ðxÞ, and with it find b1 and b2. For � ¼ 0:75 we
find b1 ¼ 0:075, b2 ¼ 0:16 and for xc ¼ 0:5 Pin½xð1Þ� ¼
0:86 and Pin½xð2Þ� ¼ 1:86 while Pin½xð1Þ� ¼ 1:18 and
Pin½xð2Þ� ¼ 2:58 for xc ¼ 0:3. Hence Eq. (15) stands the
numerical test. We have also verified this equation with
other parameters.
After we get the amplitudes of the infinite invariant

density, b1 and b2, we may calculate peq
1 and peq

2 and so

using Eq. (13) we find the PDF of �x

f�ð �xÞ ¼ ��1 sinð��ÞR �x��1ð1� �xÞ��1

R2ð1� �xÞ2� þ ð �xÞ2� þ 2R cos��ð1� �xÞ� �x� ;
(16)

which is the Lamperti PDF. The same distribution was
previously obtained for the occupation fraction [10–12].
As pointed out by Akimoto [13] this is not surprising
since both observables are identical on the IFPs [for the
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occupation fraction the observable is the step function
which is 1 on xð2Þ ¼ 1 and zero on xð1Þ ¼ 0]. The pa-
rameter R is

R ¼ A2

A1

¼ Pin½xð2Þ�
Pin½xð1Þ� ¼

b2
b1

¼ peq
2

peq
1

: (17)

Hence, one has four amplitude ratios related to the waiting
times, the injection probabilities, the 1D and the popula-
tion probabilities which determine the PDF of �x. Amplitude
ratios can be easily generalized for the case of N IFPs and
for the case where the ajs are not all equal

peq
j

peq
i

¼ Aj

Ai

¼ jajj��Pin½xðjÞ�
jaij��Pin½xðiÞ� ¼

bjjajj��þ1

bijaij��þ1
: (18)

The second illustration.—concerns maps with N degen-
erate IFPs. We consider N ¼ 2L with L ¼ 8 and xt 2
ð�1=2; 7:5Þ. The map is

MðxtÞ ¼ xtþ
�
21=�~akðxt� kÞ1þ1=� k<xt <kþ 1=2
�21=�~akð�xtþ kÞ1þ1=� k� 1=2<xt <k;

(19)

where k ¼ 0; � � � ; L� 1. Here 16 IFPs are on fxð1Þ ¼
0�; xð2Þ ¼ 0þ; . . . ; xð15Þ ¼ 7�; xð16Þ ¼ 7þg. We use peri-
odic boundary conditions: if xt > 7:5 or xt <�1=2 we
transform xt to xt � 8 or xt þ 8 respectively. We set all
~ak ¼ 1. Then from symmetry we expect that all the am-
plitudes bj will be identical. It then follows that peq

j ¼
1=ð2LÞ. For this degenerate case we get

f�ð �xÞ ¼ � 1

�
lim
�!0

Im
XL�1

j¼0

ð �x� jþ i�Þ��1

ð �x� jþ i�Þ� : (20)

Thus, due to symmetry the distribution of �x depends only
on a single parameter which is �. In Fig. 2 we show the
PDF of �x obtained numerically together with theory
Eq. (20). For � ¼ 0:3 the distribution is wider than the
case � ¼ 3=4 since we expect that as � ! 1 the

fluctuations will vanish. Notice that f�ð �xÞ diverges on the
IFPs reflecting trajectories with a trapping time of the order
of the measurement time on one of these points.
The third example.—is the map Eq. (19) with L ¼ 3 and

hence IFPs are on xð1Þ ¼ 0�, xð2Þ ¼ 0þ, xð3Þ ¼ 1�, xð4Þ ¼
1þ, xð5Þ ¼ 2�, xð6Þ ¼ 2þ. It follows that in the long time
limit �x 2 ð0; 2Þ. We use ~a1 ¼ 1:1, ~a2 ¼ 1:5, and ~a3 ¼ 2:1.
We numerically obtain the 1D for � ¼ 3=4 and estimate
b1 ¼ b2 ’ 0:059, b3 ¼ b4 ’ 0:04, b5 ¼ b6 ’ 0:018.
Inserting these values in Eq. (12) we find p

eq
1 ¼ p

eq
2 ¼

0:239, peq
3 ¼ peq

4 ¼ 0:175, and peq
5 ¼ peq

6 ¼ 0:086. This is
compared with direct numerical computation of the occupa-
tion fraction:p

eq
1 ¼ p

eq
2 ’ 0:242, p

eq
3 ¼ p

eq
4 ’ 0:167,p

eq
5 ¼

peq
6 ’ 0:091. Deviationsbetween the twomethods are related

to the divergence of the1D next to IFPswhich induces errors
in the estimation of the bjs. Inserting the latter values ofp

eq
j s

into Eq. (13) we obtain the PDF of �xwhich as shown in Fig. 3
perfectly matches direct numerical simulation.
Discussion.—We obtained the distribution of time aver-

ages of nonintegrable observables for systems with IFPs
with an infinite invariant measure. The 1D, the occupa-
tion fractions, the injection probabilities, and the ampli-
tudes Aj of the scale free distributions of the sojourn

times, are all related and can be used to determine the
nontrivial distribution of the temporal averages. There
exists a vast number of physical systems with dynamics
governed by power-law trapping times similar to the maps
under investigation. A fundamental experimental question
is whether such systems, e.g., blinking quantum dots [21],
two dimensional rotating flows [22,23] and electro-
hydrodynamic convection in liquid crystals [24] possess
an infinite invariant measure. Hence it would be interest-
ing to extract the invariant density from the trajectories in
such experiments. If it is of infinite measure, one could
then use our theory to predict the distribution of the
temporal averages.
This work was supported by the Israel Science

Foundation. We thank Golan Bel for discussions.

FIG. 2 (color online). Numerical PDF of �x (solid line),
perfectly matches the theory Eq. (20) (dashed line) without
any fitting [map Eq. (19), left panel � ¼ 0:3, right � ¼ 0:75
and t ¼ 106].

FIG. 3 (color online). Numerical simulations give the PDF of �x
(solid line) that matches the analytical density (dashed line)
Eq. (13) [map Eq. (19), t ¼ 106, L ¼ 3 and � ¼ 3=4].
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