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The effect of particle-nonconserving processes on the steady state of driven diffusive systems is studied

within the context of a generalized ABC model. It is shown that in the limit of slow nonconserving

processes, the large deviation function of the overall particle density can be computed by making use of

the steady-state density profile of the conserving model. In this limit one can define a chemical potential

and identify first order transitions via Maxwell’s construction, similarly to what is done in equilibrium

systems. This method may be applied to other driven models subjected to slow nonconserving dynamics.
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Driven diffusive systems have been at the focus of
extensive theoretical and experimental studies in recent
years. Many studies have been devoted to systems of
particles evolving under local biased exchange processes
in the bulk which may or may not be coupled to non-
conserving reservoirs at the boundaries. Examples include
the asymmetric exclusion process (ASEP), the zero-range
process (ZRP) and many others [1–4]. Bulk-nonconserving
processes are rather common in many physical systems
such as molecular motors, traffic flow problems with road
intersections, chemical reactions in an open environment
and others (see for example [4]). The corresponding driven
models of such systems are often less tractable analytically
[5–12]. Their steady-state properties are usually very dif-
ferent from those of the corresponding conserving models.

In this Letter we study the effect of bulk-nonconserving
processes by considering the limit where they occur on a
much longer time scale than that of the conserving dynam-
ics. This separation of time scales allows the system to
relax to its conserving steady state with a fixed number of
particles in between nonconserving dynamical moves. As a
result, the steady state of the system can be expressed in
terms of an appropriate ‘‘ensemble’’ of the conserving
steady states which may be regarded as a kind of nonequi-
librium grand-canonical ensemble. One may thus use the
steady-state properties of the conserving system to analyze
the corresponding properties of the nonconserving one.

This approach is demonstrated on the ABC model
[13,14]. This is a one-dimensional three species driven
exclusion model which exhibits a phase separation transi-
tion, and which has previously been generalized to include
particle-nonconserving processes. By considering the limit
of slow nonconserving dynamics and following the ap-
proach described above, we compute explicitly the large
deviation function (LDF) of the overall particle density,
despite the fact that the LDF of the density profile is not
known. The LDF yields a definition for a ‘‘chemical po-
tential’’ which unlike the equilibrium one, depends on the
details of the nonconserving dynamical process. Based on
this derivation, we draw the exact phase diagram of the

model. The first order transition line exhibited by the
model may be computed via Maxwell’s construction,
even though detailed balance is not obeyed. As discussed
at the end of the Letter, the method presented below is
readily applicable to other driven models that are coupled
slowly to an external reservoir.
The ABC model is defined on a one-dimensional peri-

odic lattice of length L, where each site is occupied by one
of the three species of particles, labeled A, B, and C. The
model evolves by random sequential updates whereby
particles on neighboring sites are exchanged with the
following rates,

AB! 
q

1
BA BC! 

q

1
CB CA! 

q

1
AC: (1)

For q ¼ 1, the model relaxes to an equilibrium steady state
where the particles are homogeneously distributed. For any
finite value of q � 1, the model exhibits phase separation
into three domains in the limit of L! 1. Generically, the
model does not obey detailed balance and it relaxes to a
nonequilibrium steady state. A special feature of the ABC
model is that in the case where the number of particles of
the three species are equal, NA ¼ NB ¼ NC, the dynamics
obeys detailed balance with respect to an effective
Hamiltonian with long-range interactions.
The model is often studied in the limit of weak asym-

metry where q approaches 1 in the thermodynamic limit as
q ¼ expð��=LÞ [15]. This model exhibits a phase transi-
tion at some value of � between a homogenous phase and
an ordered phase with three macroscopic domains, each
predominantly occupied by one of the species. The tran-
sition point and its order depend on the values of NA, NB

andNC [15,16]. In the equal-densities case the parameter�
plays the role of the inverse temperature. This phase tran-
sition has also been studied by considering various general-
ization of the ABC model such as interval boundary
conditions [17], species-dependent q [18] and particle-
nonconserving dynamics [19–21].
In the following we analyze the generalized

weakly-asymmetric ABC model on a ring with
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particle-nonconserving dynamics [20,21]. In this model
sites can be occupied by inert vacancies, denoted by 0,
whose dynamics is defined as

A0! 
1

1
0A; B0! 

1

1
0B; C0! 

1

1
0C: (2)

The total number of particles, N ¼ NA þ NB þ NC � L,
fluctuates through evaporation and deposition of triplets of
neighboring particles given by

ABC! pe
�3��

p
000: (3)

Here p is the overall rate of the nonconserving dynamics
and � is a parameter which as shown below, can be
regarded as a chemical potential. This type of nonconserv-
ing process has been chosen because it maintains detailed
balance with respect to an effective Hamiltonian if initially
the densities are equal, NA ¼ NB ¼ NC.

In the equal-densities case, the equilibrium canonical
and grand-canonical ensembles of this model correspond,
respectively, to a conserving model, defined by rules (1)
and (2) and a nonconserving model, which includes also
rule (3). It has been found that for this case both models
exhibit the same second order transition line, which turns
into a first order line at a tricritical point only in the non-
conserving model [20,21]. Such inequivalence between
the phase diagrams of the two ensembles is often observed
in long-range interacting systems (for recent reviews see
[22,23]).

In this Letter we study the phase diagram of the gener-
alized weakly-asymmetric ABCmodel with nonequal den-
sities. In this case no free energy exists. This study can be
accomplished by analyzing the steady state of its hydro-
dynamic equations, given by

@t�� ¼ �L�2@x½��ð��þ1 � ��þ2Þ� þ L�2@2x��

þ pð�3
0 � e�3���A�B�CÞ: (4)

Here ��ðxÞ is the coarse-grained density profile whose
index � denotes the species and runs cyclicly over A, B
and C. We denote the average density of each species
by r� ¼ N�=L ¼

R
1
0 dx��ðxÞ and the overall density by

r ¼ rA þ rB þ rC. In the original ABC model (r ¼ 1,
p ¼ 0), Eq. (4) has been shown to be exact in the limit
of L! 1 for equal densities [15,17], and has been argued
to remain so even for arbitrary average densities [17].

The conserving steady state (r � 1, p ¼ 0) of Eq. (4),
denoted by �?

�ðx; rÞ, can be readily extracted from the
known steady state of the original ABC model, �?

�ðx; 1Þ,
via a scaling transformation discussed below. In the non-
conserving model, we are able to derive the steady state of
Eq. (4) in the limit of slow nonconserving dynamics,

p� L��; � > 2; (5)

where the p-dependent term becomes subdominant.
Dynamically this limit implies that on time scales of order

L2 the nonconserving model relaxes to the conserving
steady state with a fixed overall particle density, r, whereas
on longer time scales of order L�, r fluctuates around its
steady-state value.
This separation of time scales suggests that Eq. (4)

remains valid within the limit considered in Eq. (5) and
that the steady-state measure of the nonconserving model
can be written in the limit of large L as

Pncð�; NÞ ’ Pcð�;NÞPðNÞ: (6)

Here � ¼ f�ig denotes a microstate of the model with
�i ¼ A, B, C for i 2 ½1; L� and Pcð�;NÞ is the conserving
steady-state measure. Although Pcð�;NÞ is not known, the
knowledge of its extremizing profile in the hydrodynamic
limit, �?

�ðx; rÞ, is sufficient for deriving the probability
density of N in the nonconserving model, PðNÞ.
We now derive PðNÞ by writing its master equation,

which evolves on the slow time scale of the bath by

@tPðNÞ ¼
X

N0¼N�3
PðN0ÞQðN0 ! NÞ � PðNÞQðN ! N0Þ:

(7)

The average transition rates, Q, are given by

QðN ! N0Þ ¼X
�

Pcð�;NÞ
X
�0;N0

Wð�; Nj�0; N0Þ; (8)

where N0 ¼ N � 3 and W is the transition rate between
two microstates. The latter is computed by counting the
number of ABC and 000 triplets in each microstate, de-
noted by nABCð�Þ and n000ð�Þ, respectively. In the limit of
L! 1 the evaporation rate can be computed using a
saddle-point approximation, yielding

QðN!N�3Þ¼pe�3��
X
�

Pcð�;NÞnABCð�Þ

’pe�3��L
Z 1

0
dx�?

Aðx;rÞ�?
Bðx;rÞ�?

Cðx;rÞ:
(9)

The deposition rate is obtained similarly as

QðN ! N þ 3Þ ’ pL
Z 1

0
dx½�?

0 ðx; rÞ�3; (10)

which can be simplified by noting that the inert vacancies
have a flat steady-state profile, �?

0 ðx; rÞ ¼ 1� r.
Equation (7) corresponds to a one-dimensional random

walk in N in the presence of a local potential whose steady
state is

PðNÞ / YN�3
N0¼Nmin

QðN0 ! N0 þ 3Þ
QðN0 þ 3! N0Þ � e�L�Gð�;rÞ; (11)

where Nmin ¼ N � 3min�ðN�Þ is the minimal number of
particles. The LDF of the overall density, r, is
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Gð�; rÞ ¼ ��rþ
Z r

r0

dr0�ðr0Þ; (12)

where r0 is an arbitrary parameter and

�ðrÞ ¼ 1

3�

�
log

�Z 1

0
dx�?

A�
?
B�

?
C

�
� 3 logð1� rÞ

�
: (13)

The LDF, which is in fact proportional to the potential felt
by the random walker, is plotted in Fig. 1 for some point in
parameter-space. In the large L limit, the average value of r
is given by the global minimum of Gð�; rÞ which corre-
sponds to @G=@r ¼ ���ðrÞ ¼ 0.

We now discuss briefly the role of �ðrÞ as the chemical
potential of the conserving model. This will enable us to
compare the phase diagrams of the two models in the (�,
�) plane. In the absence of a Hamiltonian which states the
energy cost of adding or removing particles, the chemical
potential of a conserving nonequilibrium system can be
measured by coupling it to a microscopic gauge, custom-
arily defined using Creutz method [24]. Here, this is done
by allowing triplets of ABC particles to evaporate from the
lattice into a demon with the slow rate p defined in Eq. (5).
If the demon contains triplets, it may depose them back
into the lattice at the same rate p. Following the lines of the
derivation above, the probability density of the number
particles in the demon, Nd � 0, can be shown to obey in
the limit L! 1,

PðNd þ 3Þ
PðNdÞ

’
R
1
0 dx�

?
A�

?
B�

?
CR

1
0 dx½�?

0 �3
¼ e3��ðrÞ; (14)

and hence PðNdÞ / expð��ðrÞNdÞ [25]. The function �ðrÞ
is therefore the chemical potential of the conserving
model, as measured by the demon. In contrast to equilib-
rium, here �ðrÞ is derived from Wð�; Nj�0; N0Þ and thus
depends on the choice of nonconserving dynamics.

We now proceed to compute the phase diagrams of the
model under conserving dynamics and slow nonconserving
dynamics. The conserving phase diagram (p ¼ 0, r � 1)
can be derived from that of the original ABC model
(p ¼ 0, r ¼ 1) using a mapping where the vacant sites

are removed from each microstate of the conserving
model. The master equation of the resulting system corre-
sponds to that of the original ABC model with N sites. By
observing that q ¼ expð�=LÞ ¼ expð�r=NÞ � expð�0=NÞ
we conclude that the N-size system has an effective bias
of �0 ¼ �r. Similarly the average densities of the N-size
system can be shown to be given by r0� ¼ r�=r for � ¼ A,
B, C and r00 ¼ 0. The steady-state profile of the conserving
model can thus be expressed as

�?
�ðx; �; r�; rÞ ¼ r�?

�ðx; �r; r�=r; 1Þ; (15)

where �?
� in the r.h.s. has been derived for arbitrary r� in

[16]. Equation (15) maps the phase diagram of the original
ABC model [15,16] onto the conserving model (r � 1,
p ¼ 0). The resulting conserving phase diagram consists
of a second order transition line at

� ¼ 2�
ffiffiffi
3
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 36�2

p
; (16)

where �2 ¼ 1
6

P
�¼A;B;Cðr� � r=3Þ2 is a measure for the

deviation from equal densities. The transition becomes first
order for ðr2A þ r2B þ r2CÞr > 2ðr3A þ r3B þ r3CÞ. The phase

diagram is shown in Fig. 2(a) for two equal densities,

rA ¼ rB ¼ r=3��; rC ¼ r=3þ 2�: (17)

Since the LDF of ��ðxÞ in not known, one cannot compute
the first order transition line of the conserving model. It is
possible, however, to draw the stability limits (dashed
lines) in between which both phases are stable with respect
to small perturbations.
The phase diagram of the nonconserving model can be

derived by studying the extrema of Gð�; rÞ, given by the
equation � ¼ �ðrÞ. The function �ðrÞ, defined in
Eq. (13), is plotted for the two equal-densities case in
Fig. 3. At low values of � [Fig. 3(a)] there is a one-to-one

0.2 0.4 0.6 0.8
−0.1

−0.05

0

0.05

r

G
(µ

,r
)

r*
hom

r*
ord

FIG. 1. The large deviation function of the overall density, r,
for � ¼ 50, rA ¼ rB ¼ r=3� 0:025 and� ¼ �0:053. For these
parameters the LDF has two local minima, at r?hom and r?ord,
corresponding to the homogenous and ordered phases, respec-
tively. The nonconserving model undergoes a first order phase
transition when Gð�; r?homÞ ¼ Gð�; r?ordÞ.

−0.06 −0.04 −0.02 0
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FIG. 2. The ð1=�;�Þ phase diagrams of the conserving (a)
and nonconserving (b) models for two equal densities with � ¼
0:025. In the conserving model � is computed from Eq. (13).
The thick and thin solid lines represent the first and second order
phase transitions, respectively. They join at the conserving (d)
and nonconserving ( ? ) tricritical points. The dashed lines
denote the stability limits of the two phases. The inset in (a)
depicts schematically the area near the conserving tricritical
point. The conserving tricritical point is irrelevant in (b), as it
is located within the ordered phase of the nonconserving model.
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correspondence between � and r. The conserving and non-
conserving models therefore behave similarly and display a
second order phase transition. At high values of �
[Fig. 3(b)] we observe a region of � where Gð�; rÞ has
three extrema. The intermediate density extremum has nega-
tive compressibility and corresponds to a maximum of
Gð�; rÞ. It is thus stable only in the conserving model, while
the nonconserving model undergoes a first order transition
according to the Maxwell’s construction (dashed line). The
construction is justified by analyzing Eqs. (11) and (12) at
the equal area point where

Pðr?ordÞ
Pðr?homÞ

¼ exp

�
L�

Z r?
ord

r?
hom

dr0ð���ðr0ÞÞ
�
¼ 1: (18)

Here r?ord and r?hom denote the value of r at the minima of

Gð�; rÞ that correspond to the ordered and homogenous
phases, respectively. This method, employed for various
values of �, yields the first order transition line [thick line
in Fig. 2(b)]. The right and left dashed lines in Fig. 2(b)
correspond to the stability limit of the homogenous and
ordered phases, respectively. They define the coexistence
region where we find three extrema of Gð�; rÞ.

The picture emerging from the derivation above can be
verified usingMonte Carlo simulations, displayed in Fig. 3.
In the conserving simulation, consisting of processes (1)
and (2), �ðrÞ is evaluated by measuring the average num-
ber of ABC triplets in the lattice. The results show good
agreement with the hydrodynamic solution, thus confirm-
ing the validity of Eq. (4). In the nonconserving simula-
tions, consisting of processes (1)–(3), the average value of
r is measured. The results deviate from the theoretical
curve only close to the first order transition shown in
Fig. 3(b). There, we find different values of r depending
on whether the simulation was initiated in the fully phase
separated or homogeneous states. This hysteretic behavior
is an indication of a first order transition. The agreement
with the theoretical results demonstrates the applicability

of the large L limit considered above to finite systems with
slow nonconserving processes.
To conclude, we have studied the generalized ABC

model with slow nonconserving dynamics. This limit en-
ables us to derive an exact expression for the LDF of the
overall density, r, based on the knowledge of the conserv-
ing steady-state, �?

�ðx; rÞ, despite the fact that the LDF of
��ðxÞ is not known. In addition, we define the chemical
potential of the model, which unlike the equilibrium one,
depends on the details of the nonconserving dynamics.
Based on this approach we compute the exact phase dia-
grams of the conserving and nonconserving models. They
consist of a second order transition line which turns into a
first order line at different tricritical points in each model.
Such ensemble inequivalence is typical of equilibrium
models with long-range interactions. This suggests that
due to long-range correlations, which appear generically
in driven diffusive systems [26–31], the ‘‘grand-
canonical’’ phase diagram derived following the approach
presented above may often differ from the corresponding
‘‘canonical’’ phase diagram.
The derivation above can be readily applied to other

driven models that are coupled slowly to an external bath.
The explicit expression of the LDF of the nonconserved
parameter may, however, depend on the steady-state prop-
erties of the conserving model which are known analyti-
cally only in a handful of models. We demonstrate this
approach and the significance of the choice of the non-
conserving process by considering the generalized ABC
model with the usual grand-canonical dynamics, where the
nonconserving process (3) is replaced by

A! pe
���

p
0; B! pe

���

p
0; C! pe

���

p
0: (19)

Assuming slow nonconserving dynamics (5) and following
the derivation above yields the same LDF as in Eq. (12) but
with �ðrÞ ¼ ½logðrÞ � logð1� rÞ�=�. As expected, differ-
ent nonconserving dynamics lead to different definitions of
the chemical potential. Here, since �ðrÞ is single-valued
for any value of �, the conserving and nonconserving
model display the same phase diagram. It consists of a
second order transition line given by Eq. (16) for � ¼ 0.
It would be interesting to study the borderline case of

� ¼ 2 and investigate how the picture presented above
changes when the ‘‘adiabatic’’ approximation (6) breaks
down. A similar limit has recently been studied in a
boundary-driven diffusive model with nonconserving dy-
namics in the bulk, for which an implicit expression for the
LDF of the profile was derived [12]. In a different study, an
approximate chemical potential has been defined for sev-
eral driven models where the nonconserving dynamics is
not slow [32–34].
We thank A. Bar, M. R. Evans, O. Hirschberg, A.
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FIG. 3. The�ðrÞ curve for two equal densities with � ¼ 0:025
and two values �. The hydrodynamic solutions of the homoge-
nous and ordered phases (solid lines) meet at the critical point
(þ). They are shown in comparison with the results of the
conserving simulation (d) and nonconserving simulation with
homogenous (h) and fully ordered (4) initial states, performed
with L ¼ 2400 and p ¼ 0:0001. The dashed line in (b) denotes
the nonconserving first order transition point.
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